Skip to main content

Section 6.2 定积分的性质

Subsection 6.2.1 定积分的性质

为了计算及应用方便起见,作如下补充规定: (1)当 \(a=b\) 时, \(\displaystyle \int_{a}^{b} f(x) \mathrm{d} x=0\text{;}\) (2)当 \(a>b\) 时, \(\displaystyle \int_{a}^{b} f(x) \mathrm{d} x=-\displaystyle \int_{b}^{a} f(x) \mathrm{d} x\text{.}\) 下面直接由定积分的定义推出定积分的性质, 下列各性质中积分上下限的大小, 如不特别指明,均不加限制并假定各性质中所列出的定积分都是存在的.

Proof.

\begin{equation*} \text { 证 } \begin{aligned} \displaystyle \int_{a}^{b}[f(x) \pm g(x)] \mathrm{d} x & =\lim\limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n}\left[f\left(\xi_{i}\right) \pm g\left(\xi_{i}\right)\right] \Delta x_{i} \\ & =\lim\limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i} \pm \lim\limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} g\left(\xi_{i}\right) \Delta x_{i} \\ & =\displaystyle \int_{a}^{b} f(x) \mathrm{d} x \pm \displaystyle \int_{a}^{b} g(x) \mathrm{d} x . \end{aligned} \end{equation*}
Proposition 6.2.1 对任意有限个函数也是成立的.

Proof.

\(\displaystyle \int_{a}^{b} k f(x) \mathrm{d} x=\lim\limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} k f\left(\xi_{i}\right) \Delta x_{i}=k \lim\limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}=k \displaystyle \int_{a}^{b} f(x) \mathrm{d} x\text{.}\)
Proposition 6.2.1Proposition 6.2.2 可推出定积分的线性性质,即
\begin{equation*} \begin{aligned} & \displaystyle \int_{a}^{b}\left[k_{1} f_{1}(x) \pm k_{2} f_{2}(x) \pm \cdots \pm k_{n} f_{n}(x)\right] \mathrm{d} x \\ = & k_{1} \displaystyle \int_{a}^{b} f_{1}(x) \mathrm{d} x \pm k_{2} \displaystyle \int_{a}^{b} f_{2}(x) \mathrm{d} x \pm \cdots \pm k_{n} \displaystyle \int_{a}^{b} f_{n}(x) \mathrm{d} x . \end{aligned} \end{equation*}

Proof.

证 因为函数 \(f(x)\)\([a, b]\) 上可积,所以不论把 \([a, b]\) 怎样分割, 和式的极限总是存在的,因此分割时把 \(c\) 始终作为一个分点. 那么和式分为两部分:
\begin{equation*} \sum\limits_{[a, b]} f\left(\xi_{i}\right) \Delta x_{i}=\sum\limits_{[a, c]} f\left(\xi_{i}\right) \Delta x_{i}+\sum\limits_{[c, b]} f\left(\xi_{i}\right) \Delta x_{i} . \end{equation*}
\(\lambda \rightarrow 0\text{,}\) 上式两端同时取极限, 即得
\begin{equation*} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x=\displaystyle \int_{a}^{c} f(x) \mathrm{d} x+\displaystyle \int_{c}^{b} f(x) \mathrm{d} x . \end{equation*}
按定积分的补充规定有, 不论 \(a, b, c\) 的相对位置如何, 总有等式
\begin{equation*} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x=\displaystyle \int_{a}^{c} f(x) \mathrm{d} x+\displaystyle \int_{c}^{b} f(x) \mathrm{d} x \end{equation*}
成立. 例如, 当 \(a<b<c\) 时, 由于 \(\displaystyle \int_{a}^{c} f(x) \mathrm{d} x=\displaystyle \int_{a}^{b} f(x) \mathrm{d} x+\displaystyle \int_{b}^{c} f(x) \mathrm{d} x\text{,}\)
\begin{equation*} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x=\displaystyle \int_{a}^{c} f(x) \mathrm{d} x-\displaystyle \int_{b}^{c} f(x) \mathrm{d} x=\displaystyle \int_{a}^{c} f(x) \mathrm{d} x+\displaystyle \int_{c}^{b} f(x) \mathrm{d} x . \end{equation*}

Proof.

这个性质的证明留给读者自己完成.

Proof.

\begin{equation*} \begin{aligned} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x-\displaystyle \int_{a}^{b} g(x) \mathrm{d} x & =\displaystyle \int_{a}^{b}[f(x)-g(x)] \mathrm{d} x \\ & =\lim\limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n}\left[f\left(\xi_{i}\right)-g\left(\xi_{i}\right)\right] \Delta x_{i}, \end{aligned} \end{equation*}
因为对任意 \(\xi_{i} \in[a, b], f\left(\xi_{i}\right) \geqslant g\left(\xi_{i}\right), \Delta x_{i}>0\text{,}\) 则和式非负, 从而有
\begin{equation*} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x \geqslant \displaystyle \int_{a}^{b} g(x) \mathrm{d} x \end{equation*}

Proof.

证 因为 \(-|f(x)| \leqslant f(x) \leqslant|f(x)|\text{,}\)Proposition 6.2.2Proposition 6.2.7 可得
\begin{equation*} -\displaystyle \int_{a}^{b}|f(x)| \mathrm{d} x \leqslant \displaystyle \int_{a}^{b} f(x) \mathrm{d} x \leqslant \displaystyle \int_{a}^{b}|f(x)| \mathrm{d} x \end{equation*}
\begin{equation*} \left|\displaystyle \int_{a}^{b} f(x) \mathrm{d} x\right| \leqslant \displaystyle \int_{a}^{b}|f(x)| \mathrm{d} x \end{equation*}
\(|f(x)|\)\([a, b]\) 上的可积性, 可由 \(f(x)\)\([a, b]\) 上的可积性推出, 这里不作证明.

Proof.

证 因为对任意 \(x \in[a, b]\text{,}\)\(m \leqslant f(x) \leqslant M\text{,}\)Proposition 6.2.7
\begin{equation*} \displaystyle \int_{a}^{b} m \mathrm{~d} x \leqslant \displaystyle \int_{a}^{b} f(x) \mathrm{d} x \leqslant \displaystyle \int_{a}^{b} M \mathrm{~d} x . \end{equation*}
\begin{equation*} \displaystyle \int_{a}^{b} M \mathrm{~d} x=M \displaystyle \int_{a}^{b} \mathrm{~d} x=M(b-a) . \end{equation*}
同理
\begin{equation*} \displaystyle \int_{a}^{b} m \mathrm{~d} x=m(b-a) \end{equation*}
\begin{equation*} m(b-a) \leqslant \displaystyle \int_{a}^{b} f(x) \mathrm{d} x \leqslant M(b-a) \end{equation*}
这个性质称为定积分的估值不等式,它表明可由被积函数在积分区间上的最大值及最小值估计积分值的大致范围.

Proof.

证 因为 \(f(x)\)\([a, b]\) 上连续,所以在 \([a, b]\) 上可积, 且有最小值 \(m\) 与最大值 \(M\text{,}\)Proposition 6.2.10
\begin{equation*} m(b-a) \leqslant \displaystyle \int_{a}^{b} f(x) \mathrm{d} x \leqslant M(b-a), \end{equation*}
\begin{equation*} m \leqslant \frac{1}{b-a} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x \leqslant M . \end{equation*}
根据闭区间上连续函数的介值定理, 在区间 \([a, b]\) 上至少有一点 \(\xi(a \leqslant \xi \leqslant b)\text{,}\)使
\begin{equation*} f(\xi)=\frac{1}{b-a} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x \end{equation*}
\begin{equation*} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x=f(\xi)(b-a) . \end{equation*}
不论 \(a, b\) 的大小关系,积分中值公式总成立. 若 \(a>b\text{,}\)则在区间 \([b, a]\) 上有
\begin{equation*} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x=f(\xi)(b-a)(b \leqslant \xi \leqslant a) . \end{equation*}
积分中值定理中的 \(f(\xi)\text{,}\)\(\frac{1}{b-a} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x\) 称为函数 \(f(x)\)\([a, b]\) 上的平均值.
几何意义: 对于以区间 \([a, b]\) 为底边的曲边梯形,它的面积等于同一底边,而 高为曲边上某一点 \(\xi\) 的纵坐标的 \(f(\xi)\) 矩形面积 (见图 6-3).

Example 6.2.12.

例 1 比较积分 \(\displaystyle \int_{1}^{2} x^{2} \mathrm{~d} x\)\(\displaystyle \int_{1}^{2} x^{3} \mathrm{~d} x\) 的大小.
Solution.
解 因为在 \([1,2]\) 上, 有 \(x^{2} \leqslant x^{3}\text{.}\)Proposition 6.2.7 知: \(\displaystyle \int_{1}^{2} x^{2} \mathrm{~d} x \leqslant \displaystyle \int_{1}^{2} x^{3} \mathrm{~d} x\text{.}\)

Example 6.2.13.

例 2 证明 \(\frac{2}{\sqrt[4]{\mathrm{e}}} \leqslant \displaystyle \int_{0}^{2} \mathrm{e}^{x^{2}-x} \mathrm{~d} x \leqslant 2 \mathrm{e}^{2}\text{.}\)
Solution.
证 因为被积函数 \(f(x)=\mathrm{e}^{x^{2}-x}\)\([0,2]\) 上最小值和最大值分别为 \(\frac{1}{\sqrt[4]{\mathrm{e}}}\)\(\mathrm{e}^{2}\text{,}\)
\begin{equation*} \frac{1}{\sqrt[4]{\mathrm{e}}} \leqslant f(x) \leqslant \mathrm{e}^{2}, x \in[0,2] . \end{equation*}
\begin{equation*} \frac{1}{\sqrt[4]{\mathrm{e}}}(2-0) \leqslant \displaystyle \int_{0}^{2} \mathrm{e}^{x^{2}-x} \mathrm{~d} x \leqslant \mathrm{e}^{2}(2-0) \end{equation*}
\begin{equation*} \frac{2}{\sqrt[4]{\mathrm{e}}} \leqslant \displaystyle \int_{0}^{2} \mathrm{e}^{x^{2}-x} \mathrm{~d} x \leqslant 2 \mathrm{e}^{2} \end{equation*}

Example 6.2.14.

例 3 利用积分性质,估计积分 \(\displaystyle \int_{0}^{3} \sqrt{4+x^{2}} \mathrm{~d} x\) 的值.
Solution.
解 令 \(f(x)=\sqrt{4+x^{2}}\text{,}\)\(f^{\prime}(x)=\frac{x}{\sqrt{4+x^{2}}}\text{.}\) 在区间 \([0,3]\)\(f^{\prime}(x) \geqslant 0\text{,}\) 所以 \(f(x)\)\([0,3]\) 单调增加, 其最小值 \(m=f(0)=2\text{,}\) 最大值 \(M=f(3)=\sqrt{13}\text{.}\) 于是由Proposition 6.2.10
\begin{equation*} m(3-0) \leqslant \displaystyle \int_{0}^{3} \sqrt{4+x^{2}} \mathrm{~d} x \leqslant M(3-0), \end{equation*}
\begin{equation*} 6 \leqslant \displaystyle \int_{0}^{3} \sqrt{4+x^{2}} \mathrm{~d} x \leqslant 3 \sqrt{13} . \end{equation*}

Example 6.2.15.

例 4 设函数 \(f(x)\)\([a, b]\) 上连续, 若 \(f(x) \geqslant 0\text{,}\)\(f(x) \neq 0\text{,}\)\(\displaystyle \int_{a}^{b} f(x) \mathrm{d} x>0\text{.}\)
Solution.
证 由 \(f(x) \neq \equiv 0\) 知, 必存在一点 \(x_{0} \in[a, b]\text{,}\) 使 \(f\left(x_{0}\right)>0\text{,}\) 再由 \(f(x)\)\([a, b]\) 上连续, 可知对于 \(\varepsilon=\frac{f\left(x_{0}\right)}{2}>0\text{,}\) 存在 \(\delta>0\text{,}\)\(x \in\left(x_{0}, x_{0}+\delta\right) \subset[a, b]\) (若 \(x_{0}=b\text{,}\)\(\left.x \in\left(x_{0}-\delta, x_{0}\right) \subset[a, b]\right)\) 时, 有
\begin{equation*} f(x)>f\left(x_{0}\right)-\varepsilon=\frac{f\left(x_{0}\right)}{2}>0 . \end{equation*}
\begin{equation*} \begin{aligned} \displaystyle \int_{a}^{b} f(x) \mathrm{d} x & =\displaystyle \int_{a}^{x_{0}} f(x) \mathrm{d} x+\displaystyle \int_{x_{0}}^{x_{0}+\delta} f(x) \mathrm{d} x+\displaystyle \int_{x_{0}+\delta}^{b} f(x) \mathrm{d} x \\ & \geqslant \displaystyle \int_{x_{0}}^{x_{0}+\delta} f(x) \mathrm{d} x \geqslant \displaystyle \int_{x_{0}}^{x_{0}+\delta} \frac{f\left(x_{0}\right)}{2} \mathrm{~d} x=\frac{1}{2} f\left(x_{0}\right) \delta>0 . \end{aligned} \end{equation*}

Subsection 6.2.2 习题 6-2

  1. 写出下列各式的结果 (假定下列各题中的函数 \(f(x)\)\((-\infty,+\infty)\) 内是连续的):
    1. \(\displaystyle \int_{1}^{3} f(x) \mathrm{d} x+\displaystyle \int_{3}^{1} f(t) \mathrm{d} t\text{;}\)
    2. \(\displaystyle \int_{2}^{3} f(x) \mathrm{d} x+\displaystyle \int_{3}^{2} f(u) \mathrm{d} u+\displaystyle \int_{1}^{2} \mathrm{~d} x\text{;}\)
    3. \(\displaystyle \int_{1}^{2} f(x) \mathrm{d} x+\displaystyle \int_{2}^{-1} f(u) \mathrm{d} u+\displaystyle \int_{-1}^{3} f(t) \mathrm{d} t\text{.}\)
  2. 比较下列各对积分的大小:
    1. \(\displaystyle \int_{0}^{1} x \mathrm{~d} x\)\(\displaystyle \int_{0}^{1} x^{2} \mathrm{~d} x\text{;}\)
    2. \(\displaystyle \int_{0}^{\frac{\pi}{2}} x \mathrm{~d} x\)\(\displaystyle \int_{0}^{\frac{\pi}{2}} \sin x \mathrm{~d} x\text{;}\)
    3. \(\displaystyle \int_{1}^{\mathrm{e}} \ln x \mathrm{~d} x\)\(\displaystyle \int_{1}^{\mathrm{e}} \ln ^{2} x \mathrm{~d} x\text{;}\)
    4. \(\displaystyle \int_{1}^{2} x \mathrm{~d} x\)\(\displaystyle \int_{1}^{2} x^{4} \mathrm{~d} x\text{.}\)
  3. 估计下列各积分的值:
    1. \(\displaystyle \int_{1}^{4}\left(x^{2}+1\right) \mathrm{d} x\text{;}\)
    2. \(\displaystyle \int_{\frac{\pi}{4}}^{\frac{5}{4} \pi}\left(1+\sin ^{2} x\right) \mathrm{d} x\text{;}\)
    3. \(\displaystyle \int_{0}^{-2} x \mathrm{e}^{x} \mathrm{~d} x\text{;}\)
    4. \(\displaystyle \int_{0}^{1} \mathrm{e}^{x^{3}} \mathrm{~d} x\text{;}\)
    5. \(\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\mathrm{d} x}{1+\sin ^{2} x}\text{;}\)
    6. \(\displaystyle \int_{1}^{2} \frac{x}{1+x^{2}} \mathrm{~d} x\text{.}\)
  4. 用定积分表示曲线 \(y=f(x)=x(x-1)(2-x)\)\(x\) 轴所围封闭图形的面积.
  5. 证明不等式 \(\frac{1}{2} \leqslant \displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} \mathrm{~d} x \leqslant \frac{\sqrt{2}}{2}\text{.}\)