Skip to main content

Section 2.2 函数的求导方法 初等函数的导数

确定函数的变化率—导数, 是理论研究和实际应用中经常遇到的问题. 但根据定义求导往往非常烦琐, 有时甚至是不可行的. 许多初等函数是由基本初等函数经过若干次四则运算和复合运算而得到的,因此求初等函数的导数就是求基本初等函数的导数及函数的和、差、积、商的求导法则和复合函数求导法则. 本节将介绍求导的一般法则和求导方法,使求导运算变得更为简便.

Subsection 2.2.1 几个基本初等函数的导数公式

现在利用2.1.1中给出的导数定义来求基本初等函数 \(\sin x, \cos x, \log _{a} x\)\(a^{x}\) 的导数公式.
  1. \(y=\sin x\)
    \begin{equation*} \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\lim\limits_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \frac{\sin (x+\Delta x)-\sin x}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \frac{2 \cos \left(x+\frac{\Delta x}{2}\right) \sin \frac{\Delta x}{2}}{\Delta x} \\ & =\lim\limits_{\Delta x \rightarrow 0} \cos \left(x+\frac{\Delta x}{2}\right) \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}}=\cos x, \end{aligned} \end{equation*}
    \((\sin x)^{\prime}=\cos x \quad(-\infty<x<+\infty) .\)
  2. \(y=\cos x\)
    \begin{equation*} \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\lim\limits_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \frac{\cos (x+\Delta x)-\cos x}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \frac{-2 \sin \left(x+\frac{\Delta x}{2}\right) \sin \frac{\Delta x}{2}}{\Delta x} \\ & =-\lim\limits_{\Delta x \rightarrow 0} \sin \left(x+\frac{\Delta x}{2}\right) \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}}=-\sin x, \end{aligned} \end{equation*}
    \(\qquad (\cos x)^{\prime}=-\sin x \quad(-\infty<x<+\infty) . \)
  3. \(y=\log _{a} x \quad(a>0, a \neq 1)\)
    \begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=\lim\limits_{\Delta x \rightarrow 0} \frac{\log _{a}(x+\Delta x)-\log _{a} x}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \log _{a}\left(1+\frac{\Delta x}{x}\right)^{\frac{1}{\Delta x}}=\frac{1}{x} \log _{a} \mathrm{e}=\frac{1}{x \ln a}, \end{equation*}
    \begin{equation*} \left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a} \end{equation*}
    特别地, 当 \(a=\mathrm{e}\) 时, \((\ln x)^{\prime}=\frac{1}{x}\text{.}\)
  4. \(y=a^{x} \quad(a>0, a \neq 1)\)
    \begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=\lim\limits_{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} a^{x} \frac{a^{\Delta x}-1}{\Delta x}=a^{x} \lim\limits_{\Delta x \rightarrow 0} \frac{\Delta x \cdot \ln a}{\Delta x}=a^{x} \ln a, \end{equation*}
    \begin{equation*} \text{故}\hspace{1cm} \left(a^{x}\right)^{\prime}=a^{x} \ln a. \end{equation*}
    特别地, 当 \(a=\mathrm{e}\) 时, \(\left(\mathrm{e}^{x}\right)^{\prime}=\mathrm{e}^{x}\text{.}\) 可见, 虽然 \(\mathrm{e}\) 是一个无理数, 但选取它作指数函数或对数函数的底, 将使这些函数的求导较为简单.

Subsection 2.2.2 函数的和、差、积、商的求导法则

Proof.

  1. \(y=u(x) \pm v(x)\text{,}\)
    \begin{equation*} \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\lim\limits_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \frac{[u(x+\Delta x) \pm v(x+\Delta x)]-[u(x) \pm v(x)]}{\Delta x} \\ & =\lim\limits_{\Delta x \rightarrow 0}\left[\frac{u(x+\Delta x)-u(x)}{\Delta x} \pm \frac{v(x+\Delta x)-v(x)}{\Delta x}\right]=\lim\limits_{\Delta x \rightarrow 0}\left(\frac{\Delta u}{\Delta x} \pm \frac{\Delta v}{\Delta x}\right) \\ & =u^{\prime}(x) \pm v^{\prime}(x), \end{aligned} \end{equation*}
    \begin{equation*} \text{故}\hspace{1cm} [u(x) \pm v(x)]^{\prime}=u^{\prime}(x) \pm v^{\prime}(x) . \end{equation*}
  2. \(y=u(x) v(x)\text{,}\)
    \begin{equation*} \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\lim\limits_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \frac{u(x+\Delta x) v(x+\Delta x)-u(x) v(x)}{\Delta x} \\ & =\lim\limits_{\Delta x \rightarrow 0} \frac{[u(x+\Delta x) v(x+\Delta x)-u(x) v(x+\Delta x)]+[u(x) v(x+\Delta x)-u(x) v(x)]}{\Delta x} \end{aligned} \end{equation*}
    \begin{equation*} =\lim\limits_{\Delta x \rightarrow 0}\left[\frac{\Delta u}{\Delta x} v(x+\Delta x)+u(x) \frac{\Delta v}{\Delta x}\right]=\frac{\mathrm{d} u}{\mathrm{~d} x} v(x)+u(x) \frac{\mathrm{d} v}{\mathrm{~d} x}, \end{equation*}
    从而
    \begin{equation*} [u(x) v(x)]^{\prime}=u^{\prime}(x) v(x)+u(x) v^{\prime}(x) . \end{equation*}
  3. \(y=\frac{u(x)}{v(x)}(v(x) \neq 0)\text{,}\)
    \begin{equation*} \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\lim\limits_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \frac{\frac{u(x+\Delta x)}{v(x+\Delta x)}-\frac{u(x)}{v(x)}}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \frac{u(x+\Delta x) v(x)-u(x) v(x+\Delta x)}{v(x) v(x+\Delta x) \cdot \Delta x} \\ & =\lim\limits_{\Delta x \rightarrow 0} \frac{u(x+\Delta x) v(x)-u(x) v(x)+u(x) v(x)-u(x) v(x+\Delta x)}{v(x) v(x+\Delta x) \cdot \Delta x} \\ & =\lim\limits_{\Delta x \rightarrow 0} \frac{1}{v(x) v(x+\Delta x)}\left[\frac{\Delta u}{\Delta x} v(x)-\frac{\Delta v}{\Delta x} u(x)\right]=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{v^{2}(x)} . \end{aligned} \end{equation*}
    \begin{equation*} \left[\frac{u(x)}{v(x)}\right]^{\prime}=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{v^{2}(x)} \end{equation*}
利用求导法则, 可以求出除 \(\sin x, \cos x\) 外其他三角函数的导数.

Example 2.2.3.

例 1 求 \(\tan x, \cot x, \sec x, \csc x\) 的导数.
Solution.
解 利用Theorem 2.2.1
\begin{equation*} \begin{aligned} (\tan x)^{\prime} & =\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{\cos ^{2} x} \\ & =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x \end{aligned} \end{equation*}
类似可得
\begin{equation*} \begin{gathered} (\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}=-\csc ^{2} x \\ (\sec x)^{\prime}=\left(\frac{1}{\cos x}\right)^{\prime}=\frac{1^{\prime} \cos x-1(\cos x)^{\prime}}{\cos ^{2} x}=\frac{\sin x}{\cos ^{2} x}=\sec x \tan x \\ (\csc x)^{\prime}=-\csc x \cot x . \end{gathered} \end{equation*}

Example 2.2.4.

例 2 设 \(y=6 a^{x}+3 \log _{a} x+x^{10}+\sin \frac{\pi}{12}\text{,}\)\(y^{\prime}\text{.}\)
Solution.
\(y^{\prime}=6 a^{x} \ln a+\frac{3}{x \ln a}+10 x^{9}\text{.}\)

Example 2.2.5.

例 3 设 \(y=x \mathrm{e}^{x} \sin x\text{,}\)\(y^{\prime}\text{.}\)
Solution.
\(y^{\prime}=x^{\prime} \mathrm{e}^{x} \sin x+x\left(\mathrm{e}^{x}\right)^{\prime} \sin x+x \mathrm{e}^{x}(\sin x)^{\prime}\) \(=\mathrm{e}^{x} \sin x+x \mathrm{e}^{x} \sin x+x \mathrm{e}^{x} \cos x\) \(=\mathrm{e}^{x}(\sin x+x \sin x+x \cos x)\text{.}\)

Example 2.2.6.

例 4 求函数 \(y=\left(x^{n}+\cos x\right) \sin x\) 的导数.
Solution.
\(y^{\prime}=\left(x^{n}+\cos x\right)^{\prime} \sin x+\left(x^{n}+\cos x\right)(\sin x)^{\prime}\) \(=\left(n x^{n-1}-\sin x\right) \sin x+\left(x^{n}+\cos x\right) \cos x\) \(=x^{n-1}(n \sin x+x \cos x)+\cos 2 x\text{.}\)

Example 2.2.7.

例 5 设 \(y=\frac{\mathrm{e}^{x}+\sin x}{\sqrt{x}}\text{,}\)\(y^{\prime}\text{.}\)
Solution.
\(y^{\prime}=\frac{\sqrt{x}\left(\mathrm{e}^{x}+\sin x\right)^{\prime}-\left(\mathrm{e}^{x}+\sin x\right)(\sqrt{x})^{\prime}}{(\sqrt{x})^{2}}\) \(=\frac{\sqrt{x}\left(\mathrm{e}^{x}+\cos x\right)-\left(\mathrm{e}^{x}+\sin x\right) \frac{1}{2 \sqrt{x}}}{x}\) \(=\frac{(2 x-1) \mathrm{e}^{x}+2 x \cos x-\sin x}{2 x \sqrt{x}}\text{.}\)

Example 2.2.8.

例 6 (基因数据及其对变化的敏感性) 一般地, 当 \(x\) 较小的变化引起函数值 \(f(x)\) 较大的变化时, 就称该函数对 \(x\) 的变化是相对敏感的. 导数 \(f^{\prime}(x)\) 是这种敏感性的度量方法. 奥地利遗传学家孟德尔在花园里种植豌豆和其他植物, 发现了遗传规律、分离规律和自由组合规律. 他的研究表明,如果 \(p\) ( 0 和 1 之间的一个数) 是使豌豆表皮光滑基因 (优势基因)的频率,而 \(1-p\) 是使豌豆表皮起皱基因的频率, 那么表皮光滑踠豆在下一代中占有的比例为
\begin{equation*} y=2 p(1-p)+p^{2}=2 p-p^{2}, \end{equation*}
从而
\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} p}=2-2 p \end{equation*}
在图 2-7(a) 中, 当 \(p\) 较小时, \(y\)\(p\) 变化的影响比 \(p\) 较大时更为敏感. 确实,图 2-7(b) 的导数图形证实了这一事实, 该图形表明当 \(p\) 在 0 附近时 \(\frac{\mathrm{d} y}{\mathrm{~d} p}\) 接近 2 , 而当 \(p\) 在 1 附近时 \(\frac{\mathrm{d} y}{\mathrm{~d} p}\) 接近 0 .
该导数在遗传学中的含意为: 在高度隐性的群体(如表皮起皱踠豆的频率大的群体)和高度优势的群体中引进稍多一点的优势基因, 前者比后者对下一代优势基因的增加有更加显著的影响.

Subsection 2.2.3 反函数的求导法则

对于任意给定的函数,一般说来其反函数未必存在,但如果 \(f(x)\) 是某区间 \(I\)上的单值单调的连续函数, 那么它的反函数 \(x=\varphi(y)\) 在相应的区间 \(I^{\prime}\) 上也是单值单调的连续函数,这样我们有以下定理.

Proof.

证 因为函数 \(x=\varphi(y)\) 在某区间 \(I\) 上单调连续, 由 Theorem 1.3.24知, 反函数 \(y=\varphi^{-1}(x)=f(x)\) 在相应区间 \(I^{\prime}\) 上也单调连续. 任取 \(x \in I^{\prime}\text{,}\)\(x\) 以增量 \(\Delta x\left(\Delta x \neq 0, x+\Delta x \in I^{\prime}\right)\text{,}\)\(y=f(x)\) 的单调性, 有
\begin{equation*} \Delta y=f(x+\Delta x)-f(x) \neq 0, \end{equation*}
且由 \(x=\varphi(y)\) 的连续性, 当 \(\Delta y \rightarrow 0\) 时, \(\Delta x \rightarrow 0\text{;}\)\(y=\varphi^{-1}(x)=f(x)\) 的连续性, 当 \(\Delta y \rightarrow 0\) 时, \(\Delta x \rightarrow 0\text{,}\) 故 即
\begin{equation*} \begin{gathered} \frac{\mathrm{d} y}{\mathrm{~d} x}=\lim\limits_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \rightarrow 0} \frac{1}{\frac{\Delta x}{\Delta y}}=\frac{1}{\lim\limits_{\Delta y \rightarrow 0} \frac{\Delta x}{\Delta y}}=\frac{1}{\frac{\mathrm{d} x}{\mathrm{~d} y}}, \\ f^{\prime}(x)=\frac{1}{\varphi^{\prime}(y)} . \end{gathered} \end{equation*}
利用反函数的求导法则, 可以求出另一些基本初等函数的导数公式.

Example 2.2.10.

例 7 求反正弦函数 \(y=\arcsin x\) 的导数.
Solution.
解 由于 \(y=\arcsin x\)\(x=\varphi(y)=\sin y, y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) 的反函数, 由Theorem 2.2.9\(y^{\prime}=(\arcsin x)^{\prime}=\frac{1}{(\sin y)^{\prime}}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}}(-1<x<1)\text{.}\) 类似地, 有
\begin{equation*} (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \quad(-1<x<1) \end{equation*}

Example 2.2.11.

例 8 求反正切函数 \(y=\arctan x\) 的导数.
Solution.
\(y=\arctan x\)\(x=\tan y\left(-\frac{\pi}{2}<y<\frac{\pi}{2}\right)\) 的反函数, 由定理 2 , 有
\begin{equation*} y^{\prime}=(\arctan x)^{\prime}=\frac{1}{(\tan y)^{\prime}}=\frac{1}{\sec ^{2} y}=\frac{1}{1+\tan ^{2} y}=\frac{1}{1+x^{2}} . \end{equation*}
类似地,有
\begin{equation*} (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \end{equation*}

Subsection 2.2.4 复合函数的求导法则

Proof.

\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(u) \cdot \varphi^{\prime}(x) \end{equation*}
\begin{equation} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{d} u}{\mathrm{~d} x} .\tag{2.2.2} \end{equation}
证 设 \(x\) 有增量 \(\Delta x \neq 0\text{,}\) 相应地 \(u=\varphi(x)\) 有增量 \(\Delta u\text{,}\)\(\Delta u \neq 0\) 时, 函数 \(y\) 有增量 \(\Delta y\text{.}\) 因为 \(y=f(u)\) 在点 \(u\) 处可导, 所以有
\begin{equation*} \lim\limits_{\Delta u \rightarrow 0} \frac{\Delta y}{\Delta u}=f^{\prime}(u) \end{equation*}
\begin{equation*} \frac{\Delta y}{\Delta u}=f^{\prime}(u)+\alpha \text {, 其中 } \lim\limits_{\Delta u \rightarrow 0} \alpha=0 \text {, } \end{equation*}
从而
\begin{equation} \Delta y=f^{\prime}(u) \Delta u+\alpha \Delta u \text {. }\tag{2.2.3} \end{equation}
\(\Delta u=0\) 时, \(\Delta y=f(u+\Delta u)-f(u)=0\text{,}\) (2.2.3) 仍成立, 两边除以 \(\Delta x \neq 0\text{,}\)
\begin{equation*} \frac{\Delta y}{\Delta x}=f^{\prime}(u) \frac{\Delta u}{\Delta x}+\alpha \frac{\Delta u}{\Delta x}, \end{equation*}
于是
\begin{equation} \frac{\mathrm{d} y}{\mathrm{~d} x}=\lim\limits_{\Delta x \rightarrow 0}\left[f^{\prime}(u) \frac{\Delta u}{\Delta x}+\alpha \frac{\Delta u}{\Delta x}\right] .\tag{2.2.4} \end{equation}
\(\Delta x \rightarrow 0\) 时, \(\Delta u \rightarrow 0\text{,}\)
\begin{equation*} \lim\limits_{\Delta x \rightarrow 0}\left[f^{\prime}(u) \frac{\Delta u}{\Delta x}\right]=f^{\prime}(u) \frac{\mathrm{d} u}{\mathrm{~d} x}, \end{equation*}
代入(2.2.4),有
\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(u) \frac{\mathrm{d} u}{\mathrm{~d} x}=f^{\prime}(u) \varphi^{\prime}(x) . \end{equation*}

Example 2.2.13.

例 9 求 \(y=\left(2 x-\frac{3}{x}\right)^{10}\) 的导数.
Solution.
解 设 \(y=u^{10}, u=2 x-\frac{3}{x}\text{,}\)
\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} u}\left(u^{10}\right) \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left(2 x-\frac{3}{x}\right)=10 u^{9}\left(2+\frac{3}{x^{2}}\right)=10\left(2+\frac{3}{x^{2}}\right)\left(2 x-\frac{3}{x}\right)^{9} . \end{equation*}

Example 2.2.14.

例 10 求幂函数 \(y=x^{\mu}\) 的导数.
Solution.
\begin{equation*} y=x^{\mu}=\mathrm{e}^{\mu \ln x}, \end{equation*}
\begin{equation*} y=\mathrm{e}^{u}, u=\mu \ln x, \end{equation*}
\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\mathrm{e}^{u}\right)^{\prime} u_{x}^{\prime}=\mathrm{e}^{u} \frac{\mu}{x}=\mathrm{e}^{\mu \ln x} \frac{\mu}{x}=x^{\mu} \cdot \frac{\mu}{x}=\mu x^{\mu-1} . \end{equation*}
即对任意实数 \(\mu\)
\begin{equation*} \left(x^{\mu}\right)^{\prime}=\mu x^{\mu-1} . \end{equation*}

Example 2.2.15.

例 11 求双曲函数 \(\operatorname{sh} x, \operatorname{ch} x\text{,}\) th \(x\text{,}\) cth \(x\) 的导数.
Solution.
\((\operatorname{sh} x)^{\prime}=\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)^{\prime}=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}=\operatorname{ch} x\text{;}\) \((\operatorname{ch} x)^{\prime}=\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{\prime}=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}=\operatorname{sh} x ;\) \((\operatorname{th} x)^{\prime}=\left(\frac{\operatorname{sh} x}{\operatorname{ch} x}\right)^{\prime}=\frac{(\operatorname{sh} x)^{\prime} \operatorname{ch} x-\operatorname{sh} x(\operatorname{ch} x)^{\prime}}{\operatorname{ch}^{2} x}=\frac{\operatorname{ch}^{2} x-\operatorname{sh}^{2} x}{\operatorname{ch}^{2} x}=\frac{1}{\operatorname{ch}^{2} x}\text{;}\) \((\operatorname{cth} x)^{\prime}=\left(\frac{\operatorname{ch} x}{\operatorname{sh} x}\right)^{\prime}=\frac{\operatorname{sh}^{2} x-\operatorname{ch}^{2} x}{\operatorname{sh}^{2} x}=-\frac{1}{\operatorname{sh}^{2} x}\text{.}\)

Example 2.2.16.

例 12 求反双曲正弦函数 \(y=\operatorname{arsh} x\) 的导数.
Solution.
\(y=\operatorname{arsh} x\)\(x=\operatorname{sh} y\) 的反函数, 所以
\begin{equation*} y^{\prime}=(\operatorname{arsh} x)^{\prime}=\frac{1}{(\operatorname{sh} y)^{\prime}}=\frac{1}{\operatorname{ch} y}=\frac{1}{\sqrt{1+\operatorname{sh}^{2} y}}=\frac{1}{\sqrt{1+x^{2}}} . \end{equation*}
类似地, 可得
\begin{equation*} \begin{aligned} & (\operatorname{arch} x)^{\prime}=\frac{1}{\sqrt{x^{2}-1}} ; \\ & (\operatorname{arth} x)^{\prime}=\frac{1}{1-x^{2}} . \end{aligned} \end{equation*}

Example 2.2.17.

例 13 求 \(y=\ln \left(x+\sqrt{1+x^{2}}\right)\) 的导数.
Solution.
解 通常可以不写出中间变量, 于是
\begin{equation*} \begin{aligned} y^{\prime} & =\frac{1}{x+\sqrt{1+x^{2}}}\left(x+\sqrt{1+x^{2}}\right)^{\prime}=\frac{1}{x+\sqrt{1+x^{2}}}\left[1+\frac{1}{2 \sqrt{1+x^{2}}}\left(1+x^{2}\right)^{\prime}\right] \\ & =\frac{1}{x+\sqrt{1+x^{2}}}\left[1+\frac{x}{\sqrt{1+x^{2}}}\right]=\frac{\sqrt{1+x^{2}}+x}{\left(x+\sqrt{1+x^{2}}\right) \sqrt{1+x^{2}}}=\frac{1}{\sqrt{1+x^{2}}} . \end{aligned} \end{equation*}
2 由 1.1 .8 内容知
\begin{equation*} y=\operatorname{arsh} x=\ln \left(x+\sqrt{1+x^{2}}\right) . \end{equation*}
本题的结果与上例完全一致.

Example 2.2.18.

例 14 求 \(y=\ln |x|\) 的导数.
Solution.
解 当 \(x>0\) 时, \(y^{\prime}=(\ln x)^{\prime}=\frac{1}{x}\text{.}\)\(x<0\) 时, \(y^{\prime}=[\ln (-x)]^{\prime}=\frac{1}{-x}(-x)^{\prime}=\frac{1}{x}\text{.}\) 所以, 只要 \(x \neq 0\text{,}\) 总有
\begin{equation*} (\ln |x|)^{\prime}=\frac{1}{x} \end{equation*}
至此,已经得到了一些基本初等函数的导数公式, 现罗列如下:
  1. \((C)^{\prime}=0\) ( \(C\) 为常数).
  2. \(\left(x^{\mu}\right)^{\prime}=\mu x^{\mu-1}\) ( \(\mu\) 为实数).
  3. \(\left(a^{x}\right)^{\prime}=a^{x} \ln a(a>0, a \neq 1)\text{;}\) 特别地, \(\left(\mathrm{e}^{x}\right)^{\prime}=\mathrm{e}^{x}\text{.}\)
  4. \(\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}(a>0, a \neq 1)\text{;}\) 特别地, \((\ln x)^{\prime}=\frac{1}{x},(\ln |x|)^{\prime}=\frac{1}{x}\text{.}\)
  5. \((\sin x)^{\prime}=\cos x\text{.}\)
  6. \((\cos x)^{\prime}=-\sin x\text{.}\)
  7. \((\tan x)^{\prime}=\sec ^{2} x\text{.}\)
  8. \((\cot x)^{\prime}=-\csc ^{2} x\text{.}\)
  9. \((\sec x)^{\prime}=\sec x \tan x\text{.}\)
  10. \((\csc x)^{\prime}=-\csc x \cot x\text{.}\)
  11. \((\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}\text{.}\)
  12. \((\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}\text{.}\)
  13. \((\arctan x)^{\prime}=\frac{1}{1+x^{2}}\text{.}\)
  14. \((\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}\text{.}\)
  15. \((\operatorname{sh} x)^{\prime}=\operatorname{ch} x\text{.}\)
  16. \((\operatorname{ch} x)^{\prime}=\operatorname{sh} x\text{.}\)
  17. \((\operatorname{th} x)^{\prime}=\frac{1}{\operatorname{ch}^{2} x}\text{.}\)
  18. \((\operatorname{arsh} x)^{\prime}=\frac{1}{\sqrt{1+x^{2}}}\text{.}\)
  19. \((\operatorname{arch} x)^{\prime}=\frac{1}{\sqrt{x^{2}-1}}\text{.}\)
  20. \((\operatorname{arth} x)^{\prime}=\frac{1}{1-x^{2}}\text{.}\)
由于初等函数是由基本初等函数经过有限次四则运算与复合运算, 并且可用一个式子表示的函数,因此利用导数的四则运算与复合运算法则及上述的基本公式, 就可以求出初等函数的导数.

Example 2.2.19.

例 15 求下列函数的导数:
  1. \(\displaystyle y=\frac{1}{2} \arctan \frac{2 x}{1-x^{2}}\)
  2. \(\displaystyle y=3^{\sin (1-2 x)}+\frac{1}{2^{x}}\)
  3. \(\displaystyle y=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}(a>0)\)
  4. \(y=x \arctan x-x \mathrm{e}^{x}+\frac{\ln x}{\sqrt{x}}\text{.}\)
Solution.
解 (1) \(y^{\prime}=\frac{1}{2} \frac{1}{1+\left(\frac{2 x}{1-x^{2}}\right)^{2}}\left(\frac{2 x}{1-x^{2}}\right)^{\prime}\)
\begin{equation*} =\frac{1}{2} \cdot \frac{\left(1-x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}+4 x^{2}} \cdot \frac{2\left(1-x^{2}\right)-2 x \cdot(-2 x)}{\left(1-x^{2}\right)^{2}}=\frac{1}{1+x^{2}} . \end{equation*}
  1. \(\displaystyle y^{\prime}=\left[3^{\sin (1-2 x)} \ln 3\right][\sin (1-2 x)]^{\prime}+\frac{-1}{\left(2^{x}\right)^{2}} \cdot\left(2^{x}\right)^{\prime}\)
\begin{equation*} \begin{aligned} & =\left[3^{\sin (1-2 x)} \ln 3\right] \cos (1-2 x) \cdot(-2)+\frac{-1}{\left(2^{x}\right)^{2}} \cdot 2^{x} \ln 2 \\ & =-2 \ln 3 \cdot 3^{\sin (1-2 x)} \cos (1-2 x)-\frac{\ln 2}{2^{x}} \end{aligned} \end{equation*}
  1. \(\displaystyle y^{\prime}=\left(\frac{x}{2} \sqrt{a^{2}-x^{2}}\right)^{\prime}+\left(\frac{a^{2}}{2} \arcsin \frac{x}{a}\right)^{\prime}\)
\begin{equation*} =\left(\frac{x}{2}\right)^{\prime} \sqrt{a^{2}-x^{2}}+\frac{x}{2}\left(\sqrt{a^{2}-x^{2}}\right)^{\prime}+\frac{a^{2}}{2}\left(\arcsin \frac{x}{a}\right)^{\prime} \end{equation*}
\begin{equation*} \begin{aligned} & =\frac{1}{2} \sqrt{a^{2}-x^{2}}+\frac{x}{2} \cdot \frac{1}{2} \frac{\left(a^{2}-x^{2}\right)^{\prime}}{\sqrt{a^{2}-x^{2}}}+\frac{a^{2}}{2} \frac{\left(\frac{x}{a}\right)^{\prime}}{\sqrt{1-\left(\frac{x}{a}\right)^{2}}} \\ & =\frac{1}{2} \sqrt{a^{2}-x^{2}}-\frac{1}{2} \frac{x^{2}}{\sqrt{a^{2}-x^{2}}}+\frac{a^{2}}{2 \sqrt{a^{2}-x^{2}}}=\sqrt{a^{2}-x^{2}} . \end{aligned} \end{equation*}
  1. \(\displaystyle y^{\prime}=\arctan x+\frac{x}{1+x^{2}}-x \mathrm{e}^{x}-\mathrm{e}^{x}+\frac{\frac{1}{x} \sqrt{x}-\ln x \cdot \frac{1}{2 \sqrt{x}}}{(\sqrt{x})^{2}}\)
\begin{equation*} =\arctan x+\frac{x}{1+x^{2}}-(x+1) \mathrm{e}^{x}+\frac{2-\ln x}{2 x \sqrt{x}} . \end{equation*}

Example 2.2.20.

例 16 求下列函数的导数:
  1. \(y=\ln \frac{\sqrt{x^{2}+1}}{\sqrt[3]{x-2}}(x>2)\text{;}\)
  2. \(y=\sqrt{x+\sqrt{x+\sqrt{x}}}\text{;}\)
  3. \(y=\log _{x} \sin x(x>0, x \neq 1)\text{;}\)
  4. \(y=x^{a^{a}}+a^{x^{a}}+a^{a^{x}}(a>0)\text{.}\)
Solution.
解 (1) 因 \(y=\frac{1}{2} \ln \left(x^{2}+1\right)-\frac{1}{3} \ln (x-2)\text{,}\)
\begin{equation*} \begin{aligned} y^{\prime} & =\frac{1}{2} \cdot \frac{1}{x^{2}+1}\left(x^{2}+1\right)^{\prime}-\frac{1}{3} \cdot \frac{1}{x-2}(x-2)^{\prime} \\ & =\frac{1}{2} \cdot \frac{1}{x^{2}+1} \cdot 2 x-\frac{1}{3} \cdot \frac{1}{x-2}=\frac{x}{x^{2}+1}-\frac{1}{3(x-2)} . \end{aligned} \end{equation*}
\begin{equation*} \begin{aligned} y^{\prime} & =\frac{1}{2 \sqrt{x+\sqrt{x+\sqrt{x}}}}(x+\sqrt{x+\sqrt{x}})^{\prime} \\ & =\frac{1}{2 \sqrt{x+\sqrt{x+\sqrt{x}}}}\left[1+\frac{1}{2 \sqrt{x+\sqrt{x}}}(x+\sqrt{x})^{\prime}\right] \\ & =\frac{1}{2 \sqrt{x+\sqrt{x+\sqrt{x}}}}\left[1+\frac{1}{2 \sqrt{x+\sqrt{x}}}\left(1+\frac{1}{2 \sqrt{x}}\right)\right] \\ & =\frac{4 \sqrt{x^{2}+x \sqrt{x}}+2 \sqrt{x}+1}{8 \sqrt{x+\sqrt{x+\sqrt{x}}} \cdot \sqrt{x^{2}+x \sqrt{x}}} . \end{aligned} \end{equation*}
  1. 在函数表达式中, 由于对数的底是变量,可用对数换底公式将其变形为
\begin{equation*} y=\frac{\ln \sin x}{\ln x} \end{equation*}
这时 \(y^{\prime}=\frac{\cot x \ln x-\frac{1}{x} \ln \sin x}{\ln ^{2} x}=\frac{x \cos x \ln x-\sin x \ln \sin x}{x \sin x \ln ^{2} x}\text{.}\)
  1. \(\displaystyle y^{\prime}=a^{a} x^{a^{a}-1}+a^{x^{a}} \cdot \ln a \cdot\left(x^{a}\right)^{\prime}+a^{a^{x}} \cdot \ln a \cdot\left(a^{x}\right)^{\prime}\)
\begin{equation*} =a^{a} x^{a^{a}-1}+a x^{a-1} a^{x^{a}} \ln a+a^{x} a^{a^{x}} \ln ^{2} a . \end{equation*}

Example 2.2.21.

例 17 设 \(f(x)=\left\{\begin{array}{ll}x, & x<0, \\ \ln (1+x), & x \geqslant 0,\end{array}\right.\)\(f^{\prime}(x)\text{.}\)
Solution.
解 求分段函数的导数时, 在每一连续区间内的导数可按一般求导法则求解, 但在分段点处的导数应利用导数的定义求解. 当 \(x<0\) 时, \(f^{\prime}(x)=1\text{;}\)\(x>0\) 时, \(f^{\prime}(x)=[\ln (1+x)]^{\prime}=\frac{1}{1+x}(1+x)^{\prime}=\) \(\frac{1}{1+x}\)\(x=0\) 时, \(f_{-}^{\prime}(0)=\lim\limits_{x \rightarrow 0^{-}} \frac{x-\ln (1+0)}{x}=1, f_{+}^{\prime}(0)=\lim\limits_{x \rightarrow 0^{+}} \frac{\ln (1+x)-\ln (1+0)}{x}=1\text{,}\)\(f^{\prime}(0)=1\text{.}\) 所以
\begin{equation*} f^{\prime}(x)= \begin{cases}1, & x \leqslant 0 \\ \frac{1}{1+x}, & x>0\end{cases} \end{equation*}

Example 2.2.22.

例 18 已知 \(f(u)\) 可导, 求导数 \(y=f(\sec x)\) 的导数.
Solution.
\(y^{\prime}=[f(\sec x)]^{\prime}=f^{\prime}(\sec x) \cdot(\sec x)^{\prime}=f^{\prime}(\sec x) \sec x \tan x\text{.}\)

Subsection 2.2.5 本节知识图谱

Figure 2.2.23. 知识图谱

Subsection 2.2.6 习题

  1. 求下列函数的导数:
    1. \(y=2 x^{3}-\frac{1}{x^{2}}+5 x+3\text{;}\)
    2. \(y=x^{2} \cos x\text{;}\)
    3. \(y=\frac{1}{\sqrt[3]{x}}+\frac{\pi}{2}\text{;}\)
    4. \(y=3^{x}+x^{4}+\mathrm{e}^{2}\text{;}\)
    5. \(y=\frac{1}{x+\sin x}\text{;}\)
    6. \(y=x \ln x+\frac{\ln x}{x}\text{;}\)
    7. \(y=\left(\frac{1}{x}-x^{2}\right)\left(x-\frac{1}{x^{2}}\right)\text{;}\)
    8. \(y=\frac{x}{\sqrt{4-x^{2}}}\text{;}\)
    9. \(y=\sqrt{x+\sqrt{x+\sqrt{x}}}\text{;}\)
    10. \(y=\mathrm{e}^{x}(\sin x-\cos x)\text{;}\)
    11. \(y=\frac{\sin x+\cos x}{2^{x}}\text{;}\)
    12. \(y=\frac{\sin x-\cos x}{\tan x}\text{.}\)
  2. 求下列函数在给定点处的导数:
    1. \(s=\ln \left(1+a^{-2 t}\right)\text{,}\)\(s^{\prime}(0)\text{;}\)
    2. \(y=\frac{1-\sqrt{x}}{1+\sqrt{x}}\text{,}\)\(\left.y^{\prime}\right|_{x=4}\text{;}\)
    3. \(y=\frac{\cos x}{2 x-1}\text{,}\)\(\left.y^{\prime}\right|_{x=\frac{\pi}{2}}\text{.}\)
  3. \(f(x)=(a x+b) \sin x+(c x+d) \cos x\text{,}\) 试确定常数 \(a, b, c, d\text{,}\) 使 \(f^{\prime}(x)=x \cos x\text{.}\)
  4. 经过点 \((0,-3)\) 及点 \((5,-2)\) 的直线与曲线 \(y=\frac{c}{x+1}\) 相切, 求常数 \(c\) 的值.
  5. 求下列函数的导数:
    1. \(y=\arcsin x^{2}-x \mathrm{e}^{x^{2}}\text{;}\)
    2. \(y=x \arccos \frac{x}{2}\text{;}\)
    3. \(y=\operatorname{arccot} \sqrt{x^{3}-2 x}\text{;}\)
    4. \(y=\frac{1}{4} \ln \frac{1+x}{1-x}+\frac{1}{2} \arctan x\text{.}\)
  6. 求下列函数的导数:
    1. \(y=\operatorname{ch}(\operatorname{sh} x)\text{;}\)
    2. \(y=(\operatorname{sh} x) \mathrm{e}^{\mathrm{ch} x}\text{;}\)
    3. \(y=\operatorname{th}\left(1-x^{2}\right)\text{;}\)
    4. \(y=\arctan \operatorname{th} x\text{;}\)
    5. \(y=\ln \operatorname{ch} x+\frac{1}{2 \operatorname{ch}^{2} x}\text{.}\)
  7. 求下列函数 \(f(x)\) 的导数, 其中 \(\varphi(x)\) 可导:
    1. \(f(x)=\varphi\left(x^{2}\right)\text{;}\)
    2. \(f(x)=\varphi\left(\mathrm{e}^{x}\right) \cdot \mathrm{e}^{\varphi(x)}\text{;}\)
    3. \(f(x)=x \varphi\left(\frac{1}{x}\right)\text{;}\)
    4. \(f(x)=\varphi[\varphi(x)]\text{.}\)
  8. 试证明:
    1. 可导奇函数的导数是偶函数, 可导偶函数的导数是奇函数;
    2. 可导周期函数的导数仍为周期函数,且周期不变.