Skip to main content

Section 5.4 有理函数的不定积分

计算不定积分的基本方法是换元积分法和分部积分法. 用这两种方法,可以求出许多函数的不定积分,但不能保证一定能把被积函数的原函数找出来,例如 \(\displaystyle \int \frac{\sin x}{x} \mathrm{~d} x, \displaystyle \int \mathrm{e}^{x^{2}} \mathrm{~d} x\) 等不能用初等函数表示出来.
下面介绍原函数一定能找到的积分类型.

Subsection 5.4.1 有理函数的积分

有理函数是指两个多项式 \(P(x)\)\(Q(x)\) 的商, 即
\begin{equation} R(x)=\frac{P(x)}{Q(x)}=\frac{a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}}{b_{0} x^{m}+b_{1} x^{m-1}+\cdots+b_{m}}\tag{5.4.1} \end{equation}
其中 \(m, n\) 是非负整数; \(a_{0}, a_{1}, \cdots, a_{n}, b_{0}, b_{1}, \cdots, b_{m}\) 是常数,且 \(a_{0} \neq 0, b_{0} \neq 0\text{.}\)
\(n \geqslant m\) 时, \(R(x)\) 称为有理假分式; 当 \(n<m\) 时, \(R(x)\) 称为有理真分式.
有理假分式 \(\frac{P(x)}{Q(x)}\) 总可以用 \(Q(x)\)\(P(x)\) 化为一个多项式 \(T(x)\) 和一个真分式之和,而多项式的不定积分是容易求出的. 因此计算有理函数的不定积分主要是计算有理真分式的不定积分.
由于两个真分式的代数和仍是一个真分式, 因此更希望把一个真分式化为若干个简单的真分式之和.
关于有理真分式在代数学上有下面的结论:
(5.4.1)是有理真分式 \((n<m)\text{,}\) 不妨设 \(b_{0}=1\text{,}\)\(Q(x)\) 总能分解成质因式之积, 即
\begin{equation} Q(x)=(x-a)^{\alpha} \cdots(x-b)^{\beta}\left(x^{2}+p x+q\right)^{\mu} \cdots\left(x^{2}+r x+s\right)^{v} .\tag{5.4.2} \end{equation}
由代数定理知,当 \(Q(x)\) 能表达成(5.4.2)的形式时,有理真分式 (5.4.1) 能唯一地写成下列部分分式之和:
\begin{equation*} \begin{aligned} \frac{P(x)}{Q(x)}= & \frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\cdots+\frac{A_{\alpha}}{(x-a)^{\alpha}}+\cdots+\frac{B_{1}}{x-b}+\frac{B_{2}}{(x-b)^{2}}+\cdots+ \\ & \frac{B_{\beta}}{(x-b)^{\beta}}+\frac{M_{1} x+N_{1}}{x^{2}+p x+q}+\frac{M_{2} x+N_{2}}{\left(x^{2}+p x+q\right)^{2}}+\cdots+\frac{M_{\mu} x+N_{\mu}}{\left(x^{2}+p x+q\right)^{\mu}}+\cdots+ \\ & \frac{U_{1} x+V_{1}}{x^{2}+r x+s}+\frac{U_{2} x+V_{2}}{\left(x^{2}+r x+s\right)^{2}}+\cdots+\frac{U_{v} x+V_{v}}{\left(x^{2}+r x+x\right)^{v}}, \end{aligned} \end{equation*}
其中 \(A_{1}, \cdots, A_{\alpha}, B_{1}, \cdots, B_{\beta}, M_{1}, \cdots, M_{\mu}, N_{1}, \cdots, N_{\mu}, U_{1}, \cdots, U_{v}, V_{1}, \cdots, V_{v}\) 都是常数.
由上述定理知, 任何有理真分式都能分解成如 \(\frac{A}{x-a}, \frac{B}{(x-a)^{k}}, \frac{C x+D}{x^{2}+p x+q}\text{,}\) \(\frac{E x+F}{\left(x^{2}+p x+q\right)^{k}}\) 的分式之和, 其中 \(A, B, C, D, E, F\) 为实数, 自然数 \(k>1\text{,}\) 方程 \(x^{2}+\) \(p x+q=0\) 没有实根, 即 \(p^{2}-4 q<0\text{,}\) 从而有理式的积分问题, 就归纳为下面四种简单分式的积分:
\begin{equation*} \displaystyle \int \frac{A}{x-a} \mathrm{~d} x ; \displaystyle \int \frac{B}{(x-a)^{k}} \mathrm{~d} x ; \displaystyle \int \frac{C x+D}{x^{2}+p x+q} \mathrm{~d} x ; \displaystyle \int \frac{E x+F}{\left(x^{2}+p x+q\right)^{k}} \mathrm{~d} x \quad(k>1) . \end{equation*}
现讨论上述四种函数类型的不定积分, 只要求出这些类型的不定积分, 有理式的积分问题就解决了.
(1)\(\displaystyle \int \frac{A}{x-a} \mathrm{~d} x=A \ln |x-a|+C\text{.}\)
(2)\(\displaystyle \int \frac{B}{(x-a)^{k}} \mathrm{~d} x=B \displaystyle \int \frac{1}{(x-a)^{k}} \mathrm{~d}(x-a)=\frac{B}{-k+1}(x-a)^{-k+1}+C\text{.}\)
(3)\(\displaystyle \int \frac{C x+D}{x^{2}+p x+q} \mathrm{~d} x \quad\left(p^{2}-4 q<0\right)\text{.}\)
\(\displaystyle \int \frac{C x+D}{x^{2}+p x+q} \mathrm{~d} x\)
\(=\displaystyle \int \frac{C\left(x+\frac{p}{2}\right)+D-\frac{1}{2} C p}{\left(x+\frac{p}{2}\right)^{2}+q-\frac{p^{2}}{4}} \mathrm{~d} x\)
\(=C \displaystyle \int \frac{x+\frac{p}{2}}{\left(x+\frac{p}{2}\right)^{2}+q-\frac{p^{2}}{4}} \mathrm{~d} x+\left(D-\frac{1}{2} C p\right) \displaystyle \int \frac{1}{\left(x+\frac{p}{2}\right)^{2}+q-\frac{p^{2}}{4}} \mathrm{~d} x\)
\(=\frac{C}{2} \ln \left|x^{2}+p x+q\right|+\frac{2 D-C p}{\sqrt{4 q-p^{2}}} \arctan \frac{2 x+p}{\sqrt{4 q-p^{2}}}+C\text{.}\)
(4) \(\displaystyle \int \frac{E x+F}{\left(x^{2}+p x+q\right)^{k}} \mathrm{~d} x \quad\left(p^{2}-4 q<0, k>1\right)\text{.}\)
\(t=x+\frac{p}{2}\text{,}\) 于是有
\begin{equation*} \displaystyle \int \frac{E x+F}{\left(x^{2}+p x+q\right)^{k}} \mathrm{~d} x=\frac{E}{2} \displaystyle \int \frac{2 t}{\left(t^{2}+a^{2}\right)} \mathrm{d} t+\left(F-\frac{E p}{2}\right) \displaystyle \int \frac{1}{\left(t^{2}+a^{2}\right)^{k}} \mathrm{~d} t, \end{equation*}
其中 \(a^{2}=q-\frac{p^{2}}{4}\text{,}\)
\begin{equation*} \begin{aligned} \displaystyle \int \frac{2 t}{\left(t^{2}+a^{2}\right)^{k}} \mathrm{~d} t & =\frac{1}{1-k} \cdot \frac{1}{\left(t^{2}+a^{2}\right)^{k-1}}+C \\ & =\frac{1}{1-k} \cdot \frac{1}{\left(x^{2}+p x+q\right)^{k-1}}+C . \end{aligned} \end{equation*}
第二个积分可利用 \(\mathbf{5 . 3}\) Example 5.3.8 的结论.
下面举几个有理真分式的积分例子.

Example 5.4.1.

例 1 求不定积分 \(\displaystyle \int \frac{x}{\left(x^{2}+1\right)(x-1)} \mathrm{d} x\text{.}\)
Solution.
解 设 \(\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x-1}\text{,}\) 比较等式两边的分子得
\begin{equation*} x=(A x+B)(x-1)+C\left(x^{2}+1\right)=(A+C) x^{2}+(B-A) x+(C-B) . \end{equation*}
再比较两端 \(x\) 的同次幂的系数有
\begin{equation*} \left\{\begin{array}{l} A+C=0, \\ -A+B=1, \\ -B+C=0 \end{array}\right. \end{equation*}
解得 \(A=-\frac{1}{2}, B=\frac{1}{2}, C=\frac{1}{2}\text{,}\) 于是
\begin{equation*} \begin{aligned} \displaystyle \int \frac{x}{\left(x^{2}+1\right)(x-1)} \mathrm{d} x & =-\frac{1}{2} \displaystyle \int \frac{x-1}{x^{2}+1} \mathrm{~d} x+\frac{1}{2} \displaystyle \int \frac{1}{x-1} \mathrm{~d} x \\ & =-\frac{1}{4} \ln \left(1+x^{2}\right)+\frac{1}{2} \arctan x+\frac{1}{2} \ln |x-1|+C . \end{aligned} \end{equation*}

Example 5.4.2.

例 2 求不定积分 \(\displaystyle \int \frac{1}{x^{2}+2 x+3} \mathrm{~d} x\text{.}\)
Solution.
解 方程 \(x^{2}+2 x+3=0\) 无实根 \(\left(p^{2}-4 q=4-12=-8<0\right)\text{,}\) 将其配方成
\begin{equation*} x^{2}+2 x+3=(x+1)^{2}+(\sqrt{2})^{2} \text {. } \end{equation*}
\(\displaystyle \int \frac{1}{x^{2}+2 x+3} \mathrm{~d} x=\displaystyle \int \frac{1}{(x+1)^{2}+(\sqrt{2})^{2}} \mathrm{~d}(x+1)=\frac{1}{\sqrt{2}} \arctan \frac{x+1}{\sqrt{2}}+C\text{.}\)

Example 5.4.3.

例 3 求不定积分 \(\displaystyle \int \frac{3 x+5}{x^{2}+2 x+2} \mathrm{~d} x\text{.}\)
Solution.
\(\displaystyle \int \frac{3 x+5}{x^{2}+2 x+2} \mathrm{~d} x=\frac{3}{2} \displaystyle \int \frac{\mathrm{d}\left(x^{2}+2 x+2\right)}{x^{2}+2 x+2}+2 \displaystyle \int \frac{\mathrm{d}(x+1)}{(x+1)^{2}+1}\)
\begin{equation*} =\frac{3}{2} \ln \left|x^{2}+2 x+2\right|+2 \arctan (x+1)+C . \end{equation*}

Example 5.4.4.

例 4 求不定积分 \(\displaystyle \int \frac{x^{2}+1}{x(x-1)^{2}} \mathrm{~d} x\text{.}\)
Solution.
解 因为 \(\frac{x^{2}+1}{x(x-1)^{2}}=\frac{1}{x}+\frac{2}{(x-1)^{2}}\text{,}\) 所以
\begin{equation*} \displaystyle \int \frac{x^{2}+1}{x(x-1)^{2}} \mathrm{~d} x=\displaystyle \int\left[\frac{1}{x}+\frac{2}{(x-1)^{2}}\right] \mathrm{d} x=\ln |x|-\frac{2}{x-1}+C . \end{equation*}

Example 5.4.5.

例 5 求不定积分 \(\displaystyle \int \frac{x^{2}+2 x-1}{(x-1)^{2}\left(x^{2}-x+1\right)} \mathrm{d} x\text{.}\)
Solution.
解 因为 \(\frac{x^{2}+2 x-1}{(x-1)^{2}\left(x^{2}-x+1\right)}=\frac{2}{x-1}+\frac{2}{(x-1)^{2}}-\frac{2 x+1}{x^{2}-x+1}\text{,}\) 所以
\begin{equation*} \begin{aligned} \displaystyle \int \frac{x^{2}+2 x-1}{(x-1)^{2}\left(x^{2}-x+1\right)} \mathrm{d} x & =\displaystyle \int\left[\frac{2}{x-1}+\frac{2}{(x-1)^{2}}-\frac{2 x+1}{x^{2}-x+1}\right] \mathrm{d} x \\ & =\displaystyle \int \frac{2}{x-1} \mathrm{~d} x+\displaystyle \int \frac{2}{(x-1)^{2}} \mathrm{~d} x-\displaystyle \int \frac{2\left(x-\frac{1}{2}\right)+2}{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}} \mathrm{~d} x \\ & =2 \ln |x-1|-\frac{2}{x-1}-\ln \left|x^{2}-x+1\right|-\frac{4}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}}+C . \end{aligned} \end{equation*}

Example 5.4.6.

例 6 求不定积分 \(\displaystyle \int \frac{1}{x\left(x^{7}+2\right)} \mathrm{d} x\text{.}\)
Solution.
解 令 \(x=\frac{1}{t}, \mathrm{~d} x=-\frac{1}{t^{2}} \mathrm{~d} t\text{,}\) 于是
\begin{equation*} \begin{aligned} \displaystyle \int \frac{1}{x\left(x^{7}+2\right)} \mathrm{d} x & =\displaystyle \int \frac{t}{\left(\frac{1}{t}\right)^{7}+2}\left(-\frac{1}{t^{2}}\right) \mathrm{d} t=-\displaystyle \int \frac{t^{6}}{1+2 t^{7}} \mathrm{~d} t \\ & =-\frac{1}{14} \ln \left|1+2 t^{7}\right|+C=-\frac{1}{14} \ln \left|2+x^{7}\right|+\frac{1}{2} \ln |x|+C . \end{aligned} \end{equation*}
注意 代换 \(x=\frac{1}{t}\) 在有理分式函数中分母的阶数较高时常使用.

Subsection 5.4.2 三角函数有理式的积分

三角函数有理式是指常数与三角函数通过有限次的有理运算所组成的函数, 这是一类可以通过变换转化成有理函数积分的类型. 由于三角函数中正切、余切、正割、余割都可用 \(\sin x, \cos x\) 表示,所以把三角函数有理式记作 \(R(\sin x, \cos x)\text{,}\) 其不定积分记为
\begin{equation*} \displaystyle \int R(\sin x, \cos x) \mathrm{d} x \end{equation*}

Subsubsection 5.4.2.1 万能代换

\(\tan \frac{x}{2}=t(-\pi<x<\pi)\)\(x=2 \arctan t\text{,}\)\(\mathrm{d} x=\frac{2}{1+t^{2}} \mathrm{~d} t\text{.}\)
\begin{equation*} \sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{2 t}{1+t^{2}} ; \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{1-t^{2}}{1+t^{2}} \end{equation*}
从而
\begin{equation*} \displaystyle \int R(\sin x, \cos x) \mathrm{d} x=\displaystyle \int R\left(\frac{2 t}{1+t^{2}}, \frac{1-t^{2}}{1+t^{2}}\right) \cdot \frac{2}{1+t^{2}} \mathrm{~d} t . \end{equation*}
这样, 就把三角函数有理式的积分化成了有理函数的积分. 由于有理函数的积分一定可以积出, 所以三角函数有理式的积分也一定能求出. 变换 \(\tan \frac{x}{2}=t\) 称为关于三角函数有理式 \(R(\sin x, \cos x)\) 的万能代换.
Example 5.4.7.
例 7 求不定积分 \(\displaystyle \int \frac{\mathrm{d} x}{\sin x(1+\cos x)}\text{.}\)
Solution.
解 设 \(\tan \frac{x}{2}=t\text{,}\)\(x=2 \arctan t, \mathrm{~d} x=\frac{2}{1+t^{2}} \mathrm{~d} t, \sin x=\frac{2 t}{1+t^{2}}, \cos x=\frac{1-t^{2}}{1+t^{2}}\text{.}\)
于是
\begin{equation*} \begin{aligned} \displaystyle \int \frac{\mathrm{d} x}{\sin x(1+\cos x)} & =\displaystyle \int \frac{1}{\frac{2 t}{1+t^{2}}\left(1+\frac{1-t^{2}}{1+t^{2}}\right)} \frac{2}{1+t^{2}} \mathrm{~d} t=\frac{1}{2} \displaystyle \int\left(t+\frac{1}{t}\right) \mathrm{d} t \\ & =\frac{1}{2}\left(\frac{t^{2}}{2}+\ln |t|\right)+C=\frac{1}{4} \tan ^{2} \frac{x}{2}+\frac{1}{2} \ln \left|\tan \frac{x}{2}\right|+C . \end{aligned} \end{equation*}
注 万能代换法理论上很重要, 也是计算三角有理函数积分的一般方法, 但在应用上由于计算量较大, 所以不是必要时,一般不用它.
Example 5.4.8.
例 8 求不定积分 \(\displaystyle \int \frac{1}{1+2 \tan x} \mathrm{~d} x\text{.}\)
Solution.
解 令 \(\tan x=t\text{,}\)\(x=\arctan t, \mathrm{~d} x=\frac{1}{1+t^{2}} \mathrm{~d} t\text{.}\) 于是
\begin{equation*} \begin{aligned} \displaystyle \int \frac{1}{1+2 \tan x} \mathrm{~d} x & =\displaystyle \int \frac{1}{1+2 t} \frac{1}{1+t^{2}} \mathrm{~d} t=\frac{1}{5} \displaystyle \int\left(\frac{1-2 t}{1+t^{2}}+\frac{4}{1+2 t}\right) \mathrm{d} t \\ & =\frac{1}{5} \displaystyle \int \frac{1}{1+t^{2}} \mathrm{~d} t-\frac{2}{5} \displaystyle \int \frac{t}{1+t^{2}} \mathrm{~d} t+\frac{4}{5} \displaystyle \int \frac{\mathrm{d} t}{1+2 t} \\ & =\frac{1}{5} \arctan t-\frac{1}{5} \ln \left(1+t^{2}\right)+\frac{2}{5} \ln |1+2 t|+C \\ & =\frac{1}{5}(x+2 \ln |\cos x+2 \sin x|)+C . \end{aligned} \end{equation*}

Subsubsection 5.4.2.2 \(R(\sin x, \cos x)=R(-\sin x,-\cos x)\)

Example 5.4.9.
例 9 求不定积分 \(\displaystyle \int \frac{1}{\sin ^{4} x \cos ^{2} x} \mathrm{~d} x\text{.}\)
Solution.
解 此类型为 \(R(\sin x, \cos x)=R(-\sin x,-\cos x)\text{;}\) 作代换 \(t=\tan x\)
\begin{equation*} \displaystyle \int \frac{1}{\sin ^{4} x \cos ^{2} x} \mathrm{~d} x=\displaystyle \int \frac{\left(1+t^{2}\right)^{2}}{t^{4}} \mathrm{~d} t=\tan x-2 \cot x-\frac{1}{3} \cot ^{3} x+C . \end{equation*}

Subsubsection 5.4.2.3 \(R(\sin x, \cos x)=\sin a x \cos b x\)\(\sin a x \sin b x\)\(\cos a x \cos b x\)

此类积分应用三角函数积化和差公式,可以很容易求得原函数.
Example 5.4.10.
例 10 求不定积分 \(\displaystyle \int \sin (9 x) \sin x \mathrm{~d} x\text{.}\)
Solution.
\begin{equation*} \begin{aligned} \displaystyle \int \sin (9 x) \sin x \mathrm{~d} x & =\frac{1}{2} \displaystyle \int[\cos (8 x)-\cos (10 x)] \mathrm{d} x \\ & =\frac{1}{2}\left[\displaystyle \int \cos (8 x) \mathrm{d} x-\displaystyle \int \cos (10 x) \mathrm{d} x\right] \\ & =\frac{1}{16} \displaystyle \int \cos (8 x) \mathrm{d}(8 x)-\frac{1}{20} \displaystyle \int \cos (10 x) \mathrm{d}(10 x) \\ & =\frac{1}{16} \sin (8 x)-\frac{1}{20} \sin (10 x)+C . \end{aligned} \end{equation*}
在求三角有理式积分时,首先应当考虑有无简便方法, 不得已时才用万能代换公式。

Subsection 5.4.3 简单无理函数的积分

简单无理函数是一类通过变换后可转化成有理函数的函数类型. 在前面换元法中已讲了一些例子, 这里再举几个例子, 总的思路就是通过变换将其有理化.
形如 \(\displaystyle \int R\left(x, \sqrt[n]{\frac{a x+b}{c x+d}}\right) \mathrm{d} x\) 的不定积分. 其中 \(a, b, c, d \in \mathbf{R}, n \in \mathbf{R}\)\(n \geqslant 2\text{,}\)\(a d-b c \neq 0\text{.}\)
\(t=\sqrt[n]{\frac{a x+b}{c x+d}}\text{,}\) 可将被积函数 \(R\left(x, \sqrt[n]{\frac{a x+b}{c x+d}}\right)\) 有理化.

Example 5.4.11.

例 11 求不定积分 \(\displaystyle \int \frac{\sqrt{x+1}}{x+2} \mathrm{~d} x\text{.}\)
Solution.
解 令 \(\sqrt{x+1}=t\text{,}\)\(x=t^{2}-1\text{,}\) 从而 \(\mathrm{d} x=2 t \mathrm{~d} t\text{.}\) 于是
\begin{equation*} \begin{aligned} \displaystyle \int \frac{\sqrt{x+1}}{x+2} \mathrm{~d} x & =\displaystyle \int \frac{t}{t^{2}+1} 2 t \mathrm{~d} t=2 \displaystyle \int\left(1-\frac{1}{1+t^{2}}\right) \mathrm{d} t=2(t-\arctan t)+C \\ & =2(\sqrt{x+1}-\arctan \sqrt{x+1})+C . \end{aligned} \end{equation*}

Example 5.4.12.

例 12 求不定积分 \(\displaystyle \int \sqrt[3]{\frac{2-x}{2+x}} \frac{1}{(2-x)^{2}} \mathrm{~d} x\text{.}\)
Solution.
解 设 \(\sqrt[3]{\frac{2-x}{2+x}}=t\text{,}\)\(x=\frac{2\left(1-t^{3}\right)}{1+t^{3}}\text{,}\) 从而 \(\mathrm{d} x=\frac{-12 t^{2}}{\left(1+t^{3}\right)^{2}} \mathrm{~d} t\text{.}\) 于是
\begin{equation*} \begin{aligned} \displaystyle \int \sqrt[3]{\frac{2-x}{2+x}} \cdot \frac{1}{(2-x)^{2}} \mathrm{~d} x & =\displaystyle \int t \cdot \frac{\left(1+t^{3}\right)^{2}}{16 t^{6}} \cdot \frac{-12 t^{2}}{\left(1+t^{3}\right)^{2}} \mathrm{~d} t=-\frac{3}{4} \displaystyle \int \frac{\mathrm{d} t}{t^{3}} \\ & =\frac{3}{8 t^{2}}+C=\frac{3}{8} \sqrt[3]{\left(\frac{2+x}{2-x}\right)^{2}}+C . \end{aligned} \end{equation*}

Example 5.4.13.

例 13 求不定积分 \(\displaystyle \int \frac{\mathrm{d} x}{\sqrt{x}(1+\sqrt[3]{x})}\text{.}\)
Solution.
解 为了使被积函数的根式 \(\sqrt{x}\)\(\sqrt[3]{x}\) 全部有理化, 设 \(\sqrt[6]{x}=t\)\(x=t^{6}\text{,}\)\(\mathrm{d} x=\) \(6 t^{5} \mathrm{~d} t\text{,}\)于是
\begin{equation*} \begin{aligned} \displaystyle \int \frac{\mathrm{d} x}{\sqrt{x}(1+\sqrt[3]{x})} & =\displaystyle \int \frac{6 t^{5}}{t^{3}\left(1+t^{2}\right)} \mathrm{d} t=6 \displaystyle \int \frac{t^{2}}{1+t^{2}} \mathrm{~d} t=6(t-\arctan t)+C \\ & =6(\sqrt[6]{x}-\arctan \sqrt[6]{x})+C . \end{aligned} \end{equation*}

Example 5.4.14.

例 14 求不定积分 \(\displaystyle \int \frac{1}{\sqrt[3]{(x+1)^{2}(x-1)^{4}}} \mathrm{~d} x\text{.}\)
Solution.
解 因为 \(\frac{1}{\sqrt[3]{(x+1)^{2}(x-1)^{4}}}=\frac{1}{(x-1)(x+1)} \sqrt[3]{\frac{x+1}{x-1}}\text{,}\) 可设 \(\sqrt[3]{\frac{x+1}{x-1}}=t\text{,}\)
\begin{equation*} x=\frac{t^{3}+1}{t^{3}-1}, \mathrm{~d} x=\frac{-6 t^{2}}{\left(t^{3}-1\right)^{2}} \mathrm{~d} t, \end{equation*}
所以
\begin{equation*} \begin{aligned} \displaystyle \int \frac{1}{\sqrt[3]{(x+1)^{2}(x-1)^{4}}} \mathrm{~d} x & =\displaystyle \int \frac{1}{\frac{2}{t^{3}-1} \cdot \frac{2 t^{3}}{t^{3}-1}} \cdot t \cdot \frac{-6 t^{2}}{\left(t^{3}-1\right)^{2}} \mathrm{~d} t \\ & =-\frac{3}{2} \displaystyle \int \mathrm{d} t=-\frac{3}{2} t+C=-\frac{3}{2} \sqrt[3]{\frac{x+1}{x-1}}+C . \end{aligned} \end{equation*}

Subsection 5.4.4 习题 5-4

  1. 求下列有理函数的不定积分:
    1. \(\displaystyle \int \frac{x}{(x+1)(x+2)(x+3)} \mathrm{d} x\text{;}\)
    2. \(\displaystyle \int \frac{x-5}{x^{3}-3 x^{2}+4} \mathrm{~d} x\text{;}\)
    3. \(\displaystyle \int \frac{\mathrm{d} x}{(x-1)(x+1)^{2}}\text{;}\)
    4. \(\displaystyle \int \frac{2 x-1}{x^{2}-5 x+6} \mathrm{~d} x\text{;}\)
    5. \(\displaystyle \int \frac{x^{5}+x^{4}-8}{x^{3}-x} \mathrm{~d} x\text{;}\)
    6. \(\displaystyle \int \frac{\mathrm{d} x}{x\left(x^{2}+1\right)}\text{;}\)
    7. \(\displaystyle \int \frac{x^{3}-3 x+2}{x\left(x^{2}+2 x+1\right)} \mathrm{d} x\text{;}\)
    8. \(\displaystyle \int \frac{x^{6}+x^{4}-4 x^{2}-2}{x^{3}\left(x^{2}+1\right)^{2}} \mathrm{~d} x\text{;}\)
    9. \(\displaystyle \int \frac{5 x+1}{x^{2}+2 x+3} \mathrm{~d} x\text{;}\)
    10. \(\displaystyle \int \frac{x}{x^{8}-1} \mathrm{~d} x\text{.}\)
  2. 计算下列不定积分:
    1. \(\displaystyle \int \frac{1}{3+5 \cos x} \mathrm{~d} x\text{;}\)
    2. \(\displaystyle \int \frac{1-\cos x}{1+\cos x} \mathrm{~d} x\text{;}\)
    3. \(\displaystyle \int \frac{\cos x}{1+\cos x} \mathrm{~d} x\text{;}\)
    4. \(\displaystyle \int \frac{\sin ^{2} x+1}{\cos ^{4} x} \mathrm{~d} x\text{;}\)
    5. \(\displaystyle \int \frac{\cot x}{\sin x+\cos x+1} \mathrm{~d} x\text{;}\)
    6. \(\displaystyle \int \frac{\sin x}{1+\sin x} \mathrm{~d} x\text{.}\)
  3. 求不定积分:
    1. \(\displaystyle \int \frac{2+x}{3 \sqrt{3-x}} \mathrm{~d} x\text{;}\)
    2. \(\displaystyle \int x \sqrt{\frac{x-1}{x+1}} \mathrm{~d} x\text{;}\)
    3. \(\displaystyle \int \sqrt{\frac{x}{1-\sqrt{x}}} \mathrm{~d} x\text{;}\)
    4. \(\displaystyle \int \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1} \mathrm{~d} x\text{;}\)
    5. \(\displaystyle \int \frac{\mathrm{d} x}{x \sqrt{x^{2}+4 x+3}}\text{;}\)
    6. \(\displaystyle \int \frac{\mathrm{d} x}{\sqrt{1+\sqrt[3]{x^{2}}}}\text{.}\)