Skip to main content

Section 8.1 Eigenvalue and Eigenvector

Subsection 8.1.1 Eigenvalue of a square matrix

Let \(A\) be an \(n \times n\) matrix. The scalar \(\lambda\) is called an eigenvalue of \(A\) when there is a nonzero vector \(\mathbf{x}\) such that
\begin{equation*} A \mathbf{x}=\lambda \mathbf{x}. \end{equation*}
The vector \(\mathbf{x}\) is an eigenvector of \(A\) corresponding to \(\lambda\text{.}\)
To solve the matrix equation above, the key is to notice that \(\lambda \mathbf{x}=(\lambda I_n)\mathbf{x} \text{.}\) Thus \(A \mathbf{x}=\lambda \mathbf{x}\) is equivalent to \(A \mathbf{x}-(\lambda I_n) \mathbf{x}=\mathbf{0}\) that is, \((A-\lambda I_n) \mathbf{x}=\mathbf{0}\text{.}\)
The matrix equation \(A\mathbf{x}=\mathbf{0}\) has nontrivial solution if and only if \(\underline{\operatorname{det}(A)= 0}\)
Thus the eigenvalue of a matrix should satisfy \(\underline{\hspace{5cm}}\text{.}\) The corresponding eigenvectors should satisfy \(\underline{\hspace{5cm}}\text{.}\)

Example 8.1.1.

Find the eigenvalues and eigenvectors of the matrix
\begin{equation*} A = \begin{pmatrix} 2 \amp -12\\ 1 \amp -5 \end{pmatrix} \end{equation*}
Exercise: Find the eigenvalues of the matrix
\begin{equation*} B = \begin{pmatrix} 1 \amp 2 \amp -2 \\ -2 \amp 5 \amp -2 \\ -6 \amp 6 \amp -3 \end{pmatrix}\text{.} \end{equation*}

Subsection 8.1.2 Characteristic Polynomial

Characteristic Polynomial.

Let \(A\) be a square matrix. The polynomial \(\det(\lambda I_n-A)\) is called the characteristic polynomial of \(A\text{.}\)
Example: Find the characteristic polynomial of the matrix \(A\) and \(B\) above, respectively.

Subsection 8.1.3 Algebraic and Geometric Multiplicities

Let \(f(\lambda)=\det(A-\lambda I_n)\) be the characteristic polynomial of \(A\text{.}\) Suppose that
\begin{align*} \operatorname{det}(A-\lambda I) \amp =(-1)^{n}\lambda^n+a_{n-1}\lambda^{n-1}+\ldots+a_1\lambda+a_0 \\ \amp =(\lambda_{i_1}-\lambda)(\lambda_{i_2}-\lambda)\ldots (\lambda_{i_n}-\lambda)\\ \amp = (\lambda_1-\lambda)^{m_1}(\lambda_2-\lambda)^{m_2}\ldots (\lambda_k-\lambda)^{m_k} \end{align*}

Definition 8.1.2.

  • The number \(k_{i}\) is called the algebriac multiplicity of the eigenvalue \(\lambda_i\text{.}\)
  • The Nullity(\(A-\lambda_{i}I_{n}\)) is called the geometric multiplicity of the eigenvalue \(\lambda_{i}\text{.}\) Note that the Nullity is always \(\geq 1\text{.}\) Recall that the nullity is the dimension of the subspace \(\{\mathbf{x}\in \mathbb{R}^{n}|(A-\lambda_{i}I_{n})\mathbf{x}=\mathbf{0}\}.\)
Note that the sum of algebraic multiplicities of all eigenvalues is the size of the matrix \(A\text{.}\) Thus if for every eigenvalue \(\lambda_{i}\text{,}\) the geometric multiplicity is equal to the algebraic multiplicity, then we will have \(n\) linear independent eigenvectors.