Skip to main content

Section 5.2 Linear independent

Linear independent.

Let \(S=\{v_1,v_2,\ldots,v_k\}\) be a subset of a vector space \(V\text{.}\) The set \(S\) is called linear independent if
\begin{equation*} x_{1}v_{1}+x_{2}v_{2}+\ldots+x_{k}v_{k}|x_{i}=\mathbf{0} \end{equation*}
has only trivial solution. That is, \(x_1=x_2=\ldots=x_n=0\) is the only solution. Otherwise, the set is called linear dependent.

Activity 5.2.1.

Let
\begin{equation*} S=\{v_1,v_2,v_3,v_4,v_5\}=\left\{\left[\begin{array}{r} 1 \\ 0 \\ -1 \\ 0 \end{array}\right],\left[\begin{array}{r} 1 \\ 1 \\ 0 \\ 2 \end{array}\right],\left[\begin{array}{r} 0 \\ 3 \\ 1 \\ -2 \end{array}\right],\left[\begin{array}{r} 0 \\ 1 \\ -1 \\ 2 \end{array}\right], \left[\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \end{array}\right]\right\}. \end{equation*}
Show that \(S\) is linear dependent.

Activity 5.2.2.

Find a maximum linear independent subset \(W\) of \(S\text{.}\) That is, \(W\) is linear independent, but for any \(W\subsetneq U\)(proper included), \(U\) is linear dependent.

Activity 5.2.3.

Write the fifth vector \(v_5\) as a linear combination of the other four vectors \(v_1, v_2,v_3\) and \(v_4\text{.}\)

Activity 5.2.4.

Find a maximal linear independent subset of the set
\begin{equation*} S=\{v_1,v_2,v_3,v_4,v_5\}=\left\{\left[\begin{array}{r} 1 \\ 0 \\ -1 \\ 0 \end{array}\right],\left[\begin{array}{r} 1 \\ 1 \\ 0 \\ 2 \end{array}\right],\left[\begin{array}{r} 0 \\ 3 \\ 1 \\ 2 \end{array}\right],\left[\begin{array}{r} 0 \\ 1 \\ -1 \\ -2 \end{array}\right], \left[\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \end{array}\right]\right\}. \end{equation*}