Skip to main content

Section 5.3 Span

Span.

Let \(S=\{v_1,v_2,\ldots,v_k\}\) be a subset of a vector space \(V\text{.}\) Define
\begin{equation*} \operatorname{span}(S)=\{x_{1}v_{1}+x_{2}v_{2}+\ldots+x_{k}v_{k}|x_{i}\in \mathbb{R}\} \end{equation*}

Example 5.3.1.

Let \(S=\left\{\left[\begin{array}{r} 1 \\ 1 \\ \end{array}\right],\left[\begin{array}{r} 0 \\ 1 \end{array}\right]\right\}\text{.}\)
\begin{equation*} \operatorname{span}(S)=\{x_{1}v_{1}+x_{2}v_{2}|x_{i}\in \mathbb{R}\}=\mathbb{R}^{2} \end{equation*}
Figure 5.3.2. The graph of \(f(t) = a \sin(b(t-c)) + d\) based on parameters \(a\text{,}\) \(b\text{,}\) \(c\text{,}\) and \(d\text{.}\)

Activity 5.3.1.

Show that the set \(S\) below spans \(\mathbb{R}^{4}\text{.}\)
\begin{equation*} S=\{v_1,v_2,v_3,v_4,v_5\}=\left\{\left[\begin{array}{r} 1 \\ 0 \\ -1 \\ 0 \end{array}\right],\left[\begin{array}{r} 1 \\ 1 \\ 0 \\ 2 \end{array}\right],\left[\begin{array}{r} 0 \\ 3 \\ 1 \\ -2 \end{array}\right],\left[\begin{array}{r} 0 \\ 1 \\ -1 \\ 2 \end{array}\right], \left[\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \end{array}\right]\right\}. \end{equation*}
That is, for any \(v=\left[\begin{array}{r} a \\ b \\ c \\ d \end{array}\right]\text{,}\) the vector equation
\begin{equation*} v = x_{1}v_{1}+x_{2}v_{2}+x_{3}v_{3}+x_{4}v_{4}+x_{5}v_{5} \end{equation*}
is consistent(has a solution).
Question: Is \(S\) a basis of \(\mathbb{R}^{4}?\)

Activity 5.3.2.

Let
\begin{equation*} S=\{v_1,v_2,v_3,v_4,v_5\}=\left\{\left[\begin{array}{r} 1 \\ 0 \\ -1 \\ 0 \end{array}\right],\left[\begin{array}{r} 1 \\ 1 \\ 0 \\ 2 \end{array}\right],\left[\begin{array}{r} 0 \\ 3 \\ 1 \\ 2 \end{array}\right],\left[\begin{array}{r} 0 \\ 1 \\ -1 \\ -2 \end{array}\right]\right\}. \end{equation*}
Suppose that \(v=\left[\begin{array}{r} a \\ b \\ c \\ d \end{array}\right]\) is in \(\operatorname{span}(S)\text{.}\) Find a relation of \(a,b,c,d\text{.}\)