Skip to main content

Section 5.4 Inner product space

Subsection 5.4.1 Abstract Vector Space

  1. Let \(\mathbf{P}_n(x)=\{a_0+a_1x+\ldots+a_nx^n|a_i\in \mathbb{R}\}\) is a vector space with two operations
    \begin{align*} (a_0+a_1x \amp +\ldots+a_nx^n) +(b_0+b_1x+\ldots+b_nx^n) \\ \amp = (a_0+b_0)+(a_1+b_1)x+\ldots+(a_n+b_n)x^n \end{align*}
    \begin{equation*} k(a_0+a_1x+\ldots+a_nx^n)=(k a_0)+(k a_1)x+\ldots+(k a_n)x^n \end{equation*}
  2. Define \(C[a, b]\) be the set of all real-valued continuous functions defined on the interval \([a,b]\text{.}\) \(C[a,b]\) is a vector space with operations
    \begin{equation*} (f+g)(x)=f(x)+g(x) \text{ and } (c f)(x)=c[f(x)]\text{.} \end{equation*}

Subsection 5.4.2 Inner Product Space

Let \(\mathbf{u}, \mathbf{v}\text{,}\) and \(\mathbf{w}\) be vectors in a vector space \(V\text{,}\) and let \(c\) be any scalar. An inner product on \(V\) is a function that associates a real number \(\langle\mathbf{u}, \mathbf{v}\rangle\) with each pair of vectors \(\mathbf{u}\) and \(\mathbf{v}\) and satisfies the axioms listed below.
  1. \(\displaystyle \langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle\)
  2. \(\displaystyle \langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle\)
  3. \(\displaystyle c\langle\mathbf{u}, \mathbf{v}\rangle=\langle c \mathbf{u}, \mathbf{v}\rangle\)
  4. \(\langle\mathbf{v}, \mathbf{v}\rangle \geq 0\text{,}\) and \(\langle\mathbf{v}, \mathbf{v}\rangle=0\) if and only if \(\mathbf{v}=\mathbf{0}\text{.}\)

Definition 5.4.1. Inner Product Space.

A vector space \(V\) with an inner product is called an inner product space.

Subsection 5.4.3 Gram-Schmidt Process in an Inner Product Space

Example: In \(C[0,2]\text{,}\) find an orthonormal basis of the space \(W=\operatorname{span}\{1,x,x^{2}\}\text{.}\)