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学而不思则罔,思而不学则殆.
Learning without thinking is ambiguous;
thinking without learning is exhausted.

– Confucious





Preface

江苏大学与美国阿卡迪亚大学的中外合作办学项目办的非常成功, 许多学生被世界百强名校录取为

研究生。本专业的目标是培养高素质复合型国际化创新人才. 毫无疑问, 数学专业是培养高素质人才

的抓手. 关于复合型和国际化, 我校学生可在美方大学选修数学、精算、数据科学和计算机科学等四

个本科专业。

高等代数的教学可为人才培养贡献一份力量。首先,我们教学内容为培养目标服务，对高等代数课程

的教学内容进行了如下修改。首先，作为专业基础课，深挖数学思想和思维，强调高等代数是代数和

几何的统一。在教学中强调教学内容的几何意义，帮助学生更好的理解教学内容。其次，加强计算

机软件在教学中的应用。将学生从大量的计算中解放出来，引领学生用所得数据中发现规律，提高

解决问题的能力,加强对数学概念的理解。最后，将编程引入教学过程，提高学生利用编程解决数学

问题的能力。在这个人工智能飞速发展的年代，高等代数已经成为它的最重要的数学基础之一，在

课上和课后发掘高等代数知识在人工智能里的应用是一个极好的教学方法，对培养高层次人才有帮

助。

线性代数是代数和几何的统一, 希望在高等代数的学习中多多体会. 在学年结束时，你问你自己是否

掌握了线性代数的核心要义，该问题等价于:我是否学会了将问题转化为矩阵问题？

Yilan Tan at UJS
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System of Linear Equations 1
1.1 System of linear equations . 3

1.2 Gauss-Jordan Elimination . 5

1.3 Solution set . . . . . . . . . . 9

1.4 Applications . . . . . . . . . . 13

1.5 SageMath . . . . . . . . . . . 15

Variable1

1: 中文意思:变量.
练习:复述第一段话.

is an expression, usually denoted by a letter, that is defined
for values within a given set. Variable can be used to represent ele-
ments of sets which are not numbers but frequently it relates to nu-
merical quantities and functions defined in them together with the
relationship between them.

Solving system of linear equation is an important topic in linear alge-
bra. It serves as a tool of this course. Inmost case we useGauss-Jordan
elimination to solve system of linear equations. The general solutions
give the idea of vector.

1.1 System of linear equations

The following definitions are important.

▶ Linear equation.
A linear equation in the variables 𝑥1, 𝑥2, … , 𝑥𝑛 is an equation
that can be written in the form

𝑎1𝑥1 + 𝑎2𝑥2 + … + 𝑎𝑛𝑥𝑛 = 𝑏

where the constant 𝑏 and the coefficients, 𝑎1, 𝑎2, … , 𝑎𝑛 are real
numbers. Figure 1.1: a linear equation 𝑥 + 𝑦 = 3.

▶ System of linear equations. A system of linear equations is a
collection of one or more linear equations involving the same
variables, 𝑥1, 𝑥2, … , 𝑥𝑛.

Figure 1.2: System of linear equations

⎧{{
⎨{{⎩

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

▶ Solution set.
A solution of the system is a list (𝑠1, 𝑠2, … , 𝑠𝑛) of numbers
that makes each equation a true statement when the values
𝑠1, … , 𝑠𝑛 are substituted for 𝑥1, … , 𝑥𝑛, respectively. The set of
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Hint: Think lines in the plane or planes in
space!

all possible solutions is called the solution set of the linear sys-
tem.

▶ Consistent and inconsistent.
A system of linear equations is said to be consistent if it has
either one solution or infinitely many solutions; a system is in-
consistent if it has no solution.

Discussion: (1) Give two examples of linear systems which are consis-
tent and inconsistent, respectively. For the consistent system, find the
solution set.

(2) Give an example of a linear system which has infinitely many so-
lutions.

Motivations

Example 1.1.1 Which linear system is easy to solve?

{
𝑥 + 𝑦 = 25

2𝑦 = 30
, {

𝑥 + 𝑦 = 25
2𝑥 + 4𝑦 = 80

The linear system on the left is called in row-echelon form, which
means that it has a “stair-step”pattern with nonzero leading coeffi-
cients. For the first linear system, using back-substitution, we easily
obtain the solution 𝑦 = 15 and then 𝑥 = 10.

Definition 1.1.1 Two linear system are called equivalent when they
have the same solution set.

It is a common sense that one can transform a linear system into an
equivalent linear system using the following three operations.

Operations which produce equaivalent linear systems

Each of these operations on a system of linear equations produces
an equivalent system.

1. Add a multiple of an equation to another equation.
2. Multiply an equation by a nonzero constant.
3. Interchange two equations.
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2: 高斯消元法

In what next, we show the second linear system in Example 1.1.1 is
equivalent to the first one.

{ 𝑥 + 𝑦 = 25 (1)
2𝑥 + 4𝑦 = 80 (2).

(1.1)

Equation (2) subtract 2 times of Equation (1) to obtain Equation (3),
that is,

{ 𝑥 + 𝑦 = 25 (1)
2𝑦 = 30 (3).

(1.2)

In this course, we go further more. 1
2 times of Equation (3) yields

that

{ 𝑥 + 𝑦 = 25 (1)
𝑦 = 15 (4).

(1.3)

Then it follows from Equation (1) substracting Equation (4) that

{ 𝑥 = 10 (5)
𝑦 = 15 (4).

(1.4)

There is a great mathematical idea behind this example, Discussion: the idea.that is, to
solve a linear system, one find an equivalent linear system which is
much easier to solve. This is themost important idea in this chap-

ter.
The algorithm to transform a system of lin-

ear equations into a unique equivalence system is called the Gauss-
Jordan elimination2.

Try this Exercise.
Example 1.1.2 Using the ideas above, find the solution set of the
linear system

⎧{{
⎨{{⎩

3𝑥2 − 6𝑥3 + 6𝑥4 + 4𝑥5 = −5
3𝑥1 − 7𝑥2 + 8𝑥3 − 5𝑥4 + 8𝑥5 = 9
3𝑥1 − 9𝑥2 + 12𝑥3 − 9𝑥4 + 6𝑥5 = 15

1.2 Gauss-Jordan Elimination

In what next, we introduce a notion to simplify the expression of
Example 1.1.2. The essential information of a linear system can be

http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q1.html
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3: Matrix is a way to record information!

4: 数学思维：类比. 三类矩阵的初等行变

换无非是三类线性方程组等价变换的另一

种表述。

5: Do you understand this paragraph? Cir-
cle your answer below:
Yes. No.

recorded compactly in a rectangular array called a matrix.3 Given
the system

⎧{{
⎨{{⎩

3𝑥2 − 6𝑥3 + 6𝑥4 + 4𝑥5 = −5
3𝑥1 − 7𝑥2 + 8𝑥3 − 5𝑥4 + 8𝑥5 = 9
3𝑥1 − 9𝑥2 + 12𝑥3 − 9𝑥4 + 6𝑥5 = 15

Try this Exercise.

The matrices

⎛⎜⎜⎜
⎝

0 3 −6 6 4
3 −7 8 −5 8
3 −9 12 −9 6

⎞⎟⎟⎟
⎠
and

⎛⎜⎜⎜
⎝

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

⎞⎟⎟⎟
⎠

are called the coefficient matrix and augmented matrix of the linear
system, respectively.

Critical Thinking:
Linear system ⟺ Matrix.

Recall that, for a linear system, there are three operations to produce
an equivalent linear system. 4 Analogue for the three operations, we
also have three row operations.

Three Operations for matrix

1. Add a multiple of a row to another row.
2. Multiply a row by a nonzero constant.
3. Interchange two rows.

Discussion: terminologies:

1. row

2. column

3. entry

Exercise 1.2.1 Answer the following three questions below.

Exercise A. Exercise B. Exercise C.

Two matrices are called row equivalent if there is a sequence of el-
ementary row operations that transforms one matrix into the other.
Row operations are reversible. Therefore, if the augmented matrices
of two linear systems are row equivalent, then the two systems have
the same solution set.5

A nonzero row or column in a matrix means a row or column that
contains at least one nonzero entry; a leading entry of a row refers to
the leftmost nonzero entry in a nonzero row.

http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q2.html
http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q6.html
http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q7.html
http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q7.html
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Definition 1.2.1 A rectangular matrix is in row echelon form (REF)
if it has the following three properties:

1. All nonzero rows are above any row of all zeros.
2. Each leading entry of a row is in a column to the right of the
leading entry of the row above it.

3. All entries in a column below a leading entry are zero.
If a matrix in row echelon form satisfies the following ad-
ditional conditions, then it is in reduced row echelon form
(RREF)

4. The leading entry in each nonzero row is 1.
5. Each leading 1 is the only nonzero entry in its column.

Example of matrices who has REF and RREF, respectively:

⎛⎜⎜⎜
⎝

2 −3 2 1
0 1 −4 8
0 0 0 0

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

1 0 0 29
0 1 0 16
0 0 1 3

⎞⎟⎟⎟
⎠

Example of matrices who are not in REF.

( 0 0
0 1

) ( 0 1
1 0

) ( 1 0
1 1

) ( 0 −3
1 0

)

Exercise: Turn the matrices above into RREF.
Answer:

( 0 1
0 0

) , ( 1 0
0 1

) , ( 1 0
0 1

) , ( 1 0
0 1

)

Definition 1.2.2 A pivot position in a matrix 𝐴 is a location in 𝐴
that corresponds to a leading 1 in the reduced echelon form of 𝐴.
A pivot column is a column of 𝐴 that contains a pivot position. Discussion: How to decide the number of

the pivot columns of a matrix 𝐴?

Example 1.2.1 Supposed that

⎛⎜⎜⎜
⎝

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15
𝑎21 𝑎22 𝑎23 𝑎24 𝑎25
𝑎31 𝑎32 𝑎33 𝑎34 𝑎35

⎞⎟⎟⎟
⎠

RREF−−⟶
⎛⎜⎜⎜
⎝

1 0 −3 3 0
0 1 −2 2 0
0 0 0 0 1

⎞⎟⎟⎟
⎠

The pivot positions are (1, 1)(row, column), (2, 2) and (3, 5); The
pivot columns are columns 1, 2 and 5.

Example 1.2.2 Find the RREF of
⎛⎜⎜⎜
⎝

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

⎞⎟⎟⎟
⎠
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Exercise: find the reduced echelon form of
the matrices

⎛⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0
0 1 3 1

−1 0 1 −1
0 2 −2 2

⎞⎟⎟⎟⎟⎟⎟
⎠

and

⎛⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0
0 1 3 1

−1 0 1 −1
0 2 2 2

⎞⎟⎟⎟⎟⎟⎟
⎠

, respectively.

Answer:
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

,

⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 2
0 1 0 −2
0 0 1 1
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

Chanllenge question: Write a code to per-
form the Gauss-Jordan elimination auto-
matically.

True or False:
1. An echelon form of a matrix𝐴 is unique.

2. One can get an echelon form of a
matrix 𝐴 by only replacement and
interchange.

Solution:

Step 1 Begin with the leftmost nonzero column, select a nonzero en-
try in that column as a pivot, and then move the row to the
first row.
Interchange Row 1 and Row 3.
⎛⎜⎜⎜
⎝

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

⎞⎟⎟⎟
⎠

𝑅1↔𝑅3−−−−−−⟶
⎛⎜⎜⎜
⎝

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

⎞⎟⎟⎟
⎠

Step 2 Use the row operations to create zeros in all positions below
the pivot.
Adding −1 times Row 1 to Row 2.
⎛⎜⎜⎜
⎝

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

⎞⎟⎟⎟
⎠

−𝑅1+𝑅2−−−−−−⟶
⎛⎜⎜⎜
⎝

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

⎞⎟⎟⎟
⎠

Step 3 Cover the row containing the pivot position and cover all rows
above it. Apply steps 1 and 2 to submatrix that remains. Repeat
the process until there are no more nonzero row to modify.
Adding −3

2 time the row 2 to row 3.
⎛⎜⎜⎜
⎝

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

⎞⎟⎟⎟
⎠

− 3
2 ⋅𝑅2+𝑅3

−−−−−−−−⟶
⎛⎜⎜⎜
⎝

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

⎞⎟⎟⎟
⎠

Step 4 Beginning with the rightmost pivot and working upward and
to the left, create zeros above each pivot. If a pivot is not 1,
make it 1 by a scaling operation. Adding -2 times row 3 to row 2,
⎛⎜⎜⎜
⎝

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

⎞⎟⎟⎟
⎠

−2𝑅3+𝑅2−−−−−−−⟶
⎛⎜⎜⎜
⎝

3 −9 12 −9 6 15
0 2 −4 4 0 −14
0 0 0 0 1 4

⎞⎟⎟⎟
⎠
.

▶ −6 times row 3 to Row 1,
⎛⎜⎜⎜
⎝

3 −9 12 −9 6 15
0 2 −4 4 0 −14
0 0 0 0 1 4

⎞⎟⎟⎟
⎠

−6𝑅3+𝑅1−−−−−−−⟶
⎛⎜⎜⎜
⎝

3 −9 12 −9 0 −9
0 2 −4 4 0 −14
0 0 0 0 1 4

⎞⎟⎟⎟
⎠
.

▶ Multiply 1
2 to Row 2,

⎛⎜⎜⎜
⎝

3 −9 12 −9 0 −9
0 2 −4 4 0 −14
0 0 0 0 1 4

⎞⎟⎟⎟
⎠

1
2 𝑅1

−−−⟶
⎛⎜⎜⎜
⎝

3 −9 12 −9 0 −9
0 1 −2 2 0 −7
0 0 0 0 1 4

⎞⎟⎟⎟
⎠
.

▶ 9 times Row 2 to Row 1,
⎛⎜⎜⎜
⎝

3 −9 12 −9 0 −9
0 1 −2 2 0 −7
0 0 0 0 1 4

⎞⎟⎟⎟
⎠

9𝑅2+𝑅1−−−−−−⟶
⎛⎜⎜⎜
⎝

3 0 −6 9 0 −72
0 1 −2 2 0 −7
0 0 0 0 1 4

⎞⎟⎟⎟
⎠
.

▶ Multiply 1
3 to Row 1,

⎛⎜⎜⎜
⎝

3 0 −6 9 0 −72
0 1 −2 2 0 −7
0 0 0 0 1 4

⎞⎟⎟⎟
⎠

1
3 𝑅1

−−−⟶
⎛⎜⎜⎜
⎝

1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4

⎞⎟⎟⎟
⎠
,

which is the reduced row echelon form of the original matrix.

Theorem 1.2.1 Each matrix is row equivalent to one and only one
reduced echelon matrix.

▶ If a matrix𝐴 is row equivalent to an echelon matrix 𝑈, we call
𝑈 an echelon form (or row echelon form) of 𝐴;

▶ if𝑈 is in reduced row echelon form, we call𝑈 the reduced (row)
echelon form of 𝐴.
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头脑风暴:为什么练习1.2.2的结果可从 Ex-
ample 1.2.2得到, 但练习1.2.3的结果不可

以?

The following exercise is also important. You may write the answer
immediately by otained result above.

Exercise 1.2.2 Find the reduce echelon form of
Answer:

⎛⎜⎜⎜
⎝

1 0 −2 0
0 1 −2 0
0 0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

0 3 −6 4
3 −7 8 8
3 −9 12 6

⎞⎟⎟⎟
⎠

.

The next exercise looks similar to the above one. However, it is totally
different.

Exercise 1.2.3 Find the reduce echelon form of
Answer:

⎛⎜⎜⎜
⎝

1 0 1 0
0 1 −1 0
0 0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

0 −6 6 4
3 8 −5 8
3 12 −9 6

⎞⎟⎟⎟
⎠

Try this Exercise.1.3 Solution set

Recall that an augmented matrix records the essential information
of a linear system. Here is a question: what we can obtain from the
reduced echelon form of the augmented matrix of a linear system?

The reduced echelon form tells many information regarding the linear
system.

Theorem 1.3.1 (Consistent) A linear system is consistent if and only
if the rightmost column of the augmented matrix is not a pivot
column - that is, if and only if an echelon form of the augmented
matrix has no row of the form

( 0 ⋯ 0 𝑏 ) with 𝑏 nonzero

Form now on in this section, we suppose that the linear system is
consistent. We define two important concepts below.

▶ Basic Variables.
The variables corresponding to pivot columns in the augmented
matrix are called basic(leading) variables.

http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q3.html
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Fill the blank:
1. The number of basic variables equals
to the number of , or

.

2. The number of free variables
equals to .

Feel free to add correct answers in
this list.

6: It is a convention(惯例).

▶ Free Variables.
The variables which are not basic variables are called free vari-
ables.

The solution set of a linear system can be described explicitly by solv-
ing the reduced system for the basic variables in terms of the free
variables.

Example 1.3.1 Solve the linear system

3𝑥2 − 6𝑥3 + 6𝑥4 + 4𝑥5 = −5
3𝑥1 − 7𝑥2 + 8𝑥3 − 5𝑥4 + 8𝑥5 = 9

3𝑥1 − 9𝑥2 + 12𝑥3 − 9𝑥4 + 6𝑥5 = 15

Solution.We divides the solution into steps.

Step 1 The augmented coefficient matrix of the system of linear equa-
tions is

𝐴 =
⎛⎜⎜⎜
⎝

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

⎞⎟⎟⎟
⎠

Step 2 The row reduced echelon form

RREF(A)=
⎛⎜⎜⎜
⎝

1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4

⎞⎟⎟⎟
⎠

Step 3 How to interpret the RREF(A)?

𝑥1 − 2𝑥3 + 3𝑥4 = −24
𝑥2 − 2𝑥3 + 2𝑥4 = −7

𝑥5 = 4

Step 4 The variables 𝑥1, 𝑥2 and 𝑥5 are the basic (leading) variables.
The other variables, 𝑥3 and 𝑥4, are the free variable.

Step 5 express the basic variables by the free variables 6

𝑥1 = −24 + 2𝑥3 − 3𝑥4

𝑥2 = −7 + 2𝑥3 − 2𝑥4

𝑥5 = 4
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Repeat the answer below: how to express
the general solution?

Step 6 The General solution is

⎧{{{
⎨{{{⎩

𝑥1 = −24 + 2𝑥3 − 3𝑥4
𝑥2 = −7 + 2𝑥3 − 2𝑥4
𝑥3 is free
𝑥4 is free
𝑥5 = 4

⇔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−24 + 3𝑥3 − 3𝑥4
−7 + 2𝑥3 − 2𝑥4

𝑥3
𝑥4
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−24 + 2𝑥3 − 3𝑥4
−7 + 2𝑥3 − 2𝑥4

𝑥3
𝑥4
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−24
−7

0
0
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+𝑥3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2
2
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+𝑥4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−3
−2

0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑥3, 𝑥4 ∈ ℝ

Step 7 The statement “𝑥3 is free” means that you are free to choose
any value for 𝑥3; The same is for 𝑥4. For example, let 𝑥3 = 1
and 𝑥4 = −2, then

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−13
−1
1

−2
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is a particular solution.
Try this Exercise.

The next exercise is a very tough one, but trying it well definitely does
benefit your computational ability.

Exercise 1.3.1 Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ. Solve the linear system The rref of the augmented matrix is:

⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 1
2 𝑎 + 1

2 𝑏 − 1
2 𝑐 − 1

2 𝑑
0 1 0 0 1

2 𝑎 − 1
2 𝑏 + 1

2 𝑐 + 1
2 𝑑

0 0 1 0 1
2 𝑏 − 1

4 𝑑
0 0 0 1 − 1

2 𝑎 − 1
2 𝑐 + 1

4 𝑑

⎞⎟⎟⎟⎟⎟⎟
⎠

.⎧{{{
⎨{{{⎩

𝑥1 + 𝑥2 = 𝑎
𝑥2 + 3𝑥3 + 𝑥4 = 𝑏

−𝑥1 + 𝑥3 − 𝑥4 = 𝑐
2𝑥2 − 2𝑥3 + 2𝑥4 = 𝑑

The next example is different with the examples above!

Example 1.3.2 Solve the system

⎧{{{
⎨{{{⎩

𝑥1 − 𝑥2 + 2𝑥3 = 4
𝑥1 + 𝑥3 = 6

2𝑥1 − 3𝑥2 + 5𝑥3 = 4
3𝑥1 + 2𝑥2 − 𝑥3 = 1

http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q5.html
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Homogeneous linear system

Homogeneous linear system is always con-
sistent.

Answer: The augmentedmatrix for this system is
⎛⎜⎜⎜⎜⎜⎜
⎝

1 −1 2 4
1 0 1 6
2 −3 5 4
3 2 −1 1

⎞⎟⎟⎟⎟⎟⎟
⎠

,

and the RREF of this matrix is
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

. Since there is a row

[0 0 0 1] in the reduced echelon form of the augmented matrix,
the system is inconsistent.

Exercise 1.3.2 Find a relation of 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ such that the linear
system below is consistent.

⎧{{{
⎨{{{⎩

𝑥1 + 𝑥2 = 𝑎
𝑥2 + 3𝑥3 + 𝑥4 = 𝑏

−𝑥1 + 𝑥3 − 𝑥4 = 𝑐
2𝑥2 + 2𝑥3 − 2𝑥4 = 𝑑

Scan for the solution!

Discussion: Suppose that the linear system 𝐴x = b is always consis-
tent for any b ∈ ℝ𝑛. What we can say about the reduced echelon form
of a the coefficient matrix?

Theorem 1.3.2 Suppose that 𝐴 is an 𝑛 × 𝑛 matrix and the linear
system 𝐴x = b is always consistent. Then

rref(𝐴) =
⎡⎢⎢
⎣

1 0
⋱

0 1

⎤⎥⎥
⎦

.

Homogeneous Linear System

Systems of linear equations in which each of the constant terms is
zero are called homogeneous. A homogeneous system of𝑚 equations
in 𝑛 variables has the form

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + ⋯ + 𝑎1𝑛𝑥𝑛 = 0
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + ⋯ + 𝑎2𝑛𝑥𝑛 = 0

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + 𝑎𝑚3𝑥3 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 0

A homogeneous system must have at least one solution. Specifically,

http://110.40.223.123:8888/?q=jrnnuk
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7: 注意这个词!

The coefficient matrix of the system is:

⎛⎜⎜⎜⎜⎜⎜
⎝

1 𝑥1 𝑥2
1 ⋯ 𝑥𝑛−1

1
1 𝑥2 𝑥2

2 ⋯ 𝑥𝑛−1
2

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛 𝑥2

𝑛 ⋯ 𝑥𝑛−1
𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

This kind of matrix is called Vandermont
matrix.

if all variables in a homogeneous system have the value zero, then
each of the equations is satisfied. Such a solution is called trivial7.

Example 1.3.3 Solve the linear system

3𝑥2 − 6𝑥3 + 6𝑥4 + 4𝑥5 = 0
3𝑥1 − 7𝑥2 + 8𝑥3 − 5𝑥4 + 8𝑥5 = 0

3𝑥1 − 9𝑥2 + 12𝑥3 − 9𝑥4 + 6𝑥5 = 0

The next example is called two birds with one stone. Keep in mind
that some questions can be solved simultaneous, which saves time
and energy.

Example 1.3.4 Solve the systems of linear equations

𝑥1 + 𝑥2 + 𝑥3 = 1 𝑥1 + 𝑥2 + 𝑥3 = 0
𝑥1 + 2𝑥2 + 4𝑥3 = 0 𝑥1 + 2𝑥2 + 4𝑥3 = 1
𝑥1 + 3𝑥2 + 9𝑥3 = 0 𝑥1 + 3𝑥2 + 9𝑥3 = 0

1.4 Applications

Example 1.4.1 (polynomial curve fitting) Find a polynomial func-
tion of degree 𝑛 − 1

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛−1𝑥𝑛−1

whose graph passes through the 𝑛-points in the 𝑥𝑦-plane

(𝑥1, 𝑦1) , (𝑥2, 𝑦2) , … , (𝑥𝑛, 𝑦𝑛) ,

where 𝑥𝑖 ≠ 𝑥𝑗 for 𝑖 ≠ 𝑗.

Solution: To solve for the 𝑛 coefficients of 𝑝(𝑥), substitute each of the
𝑛 points into the polynomial function and obtain 𝑛 linear equations
in 𝑛 variables 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−1.

⎧{{{
⎨{{{⎩

𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2
1 + ⋯ + 𝑎𝑛−1𝑥𝑛−1

1 = 𝑦1

𝑎0 + 𝑎1𝑥2 + 𝑎2𝑥2
2 + ⋯ + 𝑎𝑛−1𝑥𝑛−1

2 = 𝑦2

⋮
𝑎0 + 𝑎1𝑥𝑛 + 𝑎2𝑥2

𝑛 + ⋯ + 𝑎𝑛−1𝑥𝑛−1
𝑛 = 𝑦𝑛
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We claim the linear system has a unique solution. It is too tough to
prove it using themethod we learn in this chapter. It will become clear
once we finish Chapter 3.

Exercise 1.4.1 Determine the polynomial 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2

whose graph passes through the points (1, 4), (2, 0), and (3, 12).
Hint:

⎛⎜⎜⎜
⎝

1 1 1 4
1 2 4 0
1 3 9 12

⎞⎟⎟⎟
⎠

𝑅𝑅𝐸𝐹−−−−⟶

⎛⎜⎜⎜
⎝

1 0 0 24
0 1 0 −28
0 0 1 8

⎞⎟⎟⎟
⎠
.

Exercise 1.4.2 Find a polynomial of degree four that fits the points
(−2, 3), (−1, 5), (0, 1), (1, 4), and (2, 10).

For the next question, note that 20124 = ?? is a very large number.
We should think of a smart way to solve this question.

Exercise 1.4.3 Find a polynomial of degree 4 that fits the points

(2011, 3), (2012, 5), (2013, 1), (2014, 4), (2015, 10)

Network Analysis

Networks composed of branches and junctions are used as models in
such fields as economics, traffic analysis, and electrical engineering.
In a network model, you assume that the total flow into a junction is
equal to the total flow out of the junction. For example, the junction
shown below has 25 units flowing into it, so there must be 25 units
flowing out of it. You can represent this with the linear equation

Example 1.4.2 Set up a system of linear equations to represent the
network shown below. Then solve the system.
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Discussion: How to interpret the result?

Kirchhoff’s Laws.

In an electrical network,

1. All the current flowing into a junction must flow out of it.
2. The sum of the products 𝐼𝑅 ( 𝐼 is current and 𝑅 is resistance)
around a closed path is equal to the total voltage in the path.

Example 1.4.3 Determine the currents 𝐼1, 𝐼2, and 𝐼3 for the electri-
cal network shown below.

Try this Exercise.

Interpret the solution set of linear system from geometric viewpoint?

1.5 SageMath

SageMath is a free open-source mathematics software system with
Python-based language. its mission is to create a viable free open
source alternative to (the expensive) Magma, Maple, Mathematica
and Matlab (famous software). Figure 1.3: The logo of SageMath.

The official website is:
https://www.sagemath.org/.In this course, I will show you how to solve exercise 1.3.1 in the ac-

companied lab manual, and much more.

http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q8.html
https://www.sagemath.org/.
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A football stadium has three concession areas, located in the south,
north, and west stands. The top-selling items are peanuts, hot dogs,
and soda. Sales for one day are given in the first matrix below, and
the prices (in dollars) of the three items are given in the second matrix.

Discussion: let’s discuss the means of rows
and columns of the matrix.

One can see that the way to record information is very effective. The
information is stored in matrix.

2.1 The equality of matrices

It is standard mathematical convention to represent matrices in any
one of the three ways listed below.

1. An uppercase letter such as 𝐴, 𝐵, or 𝐶 .
2. A representative element enclosed in brackets, such as [𝑎𝑖𝑗] , [𝑏𝑖𝑗].
3. A rectangular array of numbers

⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥
⎥
⎥
⎦

The entry 𝑎𝑖𝑗 of a matrix 𝐴 is usually denoted as 𝐴𝑖𝑗.
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Figure 2.1: The size of 𝐴𝐵

Definition 2.1.1 Two matrices 𝐴 = [𝑎𝑖𝑗] and 𝐵 = [𝑏𝑖𝑗] are equal
when they have the same size (𝑚 × 𝑛) and 𝑎𝑖𝑗 = 𝑏𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑚
and 1 ≤ 𝑗 ≤ 𝑛.

Consider the four matrices

𝐴 = [ 1 2
3 4

] , 𝐵 = [ 1
3

] , 𝐶 = [ 1 3 ] , and 𝐷 = [ 1 2
𝑥 4

]

Summerize here how to check two matrices
equal.

1.

2. Matrices 𝐴 and 𝐵 are not equal because they are of different sizes.
Similarly, 𝐵 and 𝐶 are not equal. Matrices 𝐴 and 𝐷 are equal if and
only if 𝑥 = 3.

2.2 The operations of matrices

Definition 2.2.1 (Addition and Scalar Multiplication)

Addition If 𝐴 = [𝑎𝑖𝑗] and 𝐵 = [𝑏𝑖𝑗] are matrices of size 𝑚 × 𝑛,
then their sum is the 𝑚 × 𝑛 matrix 𝐴 + 𝐵 = [𝑎𝑖𝑗 + 𝑏𝑖𝑗]. 11: Remark: 𝐴 − 𝐵 = 𝐴 + (−1)𝐵.

问题:我们有没有定义矩阵减法?

Try this Exercise.

Scalar Multiplication If 𝐴 = [𝑎𝑖𝑗] is an 𝑚 × 𝑛 matrix and 𝑐 is a
scalar, then the scalar multiple of 𝐴 by 𝑐 is the𝑚×𝑛matrix
𝑐𝐴 = [𝑐𝑎𝑖𝑗].

Example 2.2.1 For the matrices 𝐴 and 𝐵, find (a) 3𝐴, (b) −𝐵, and
(c) 3𝐴 − 𝐵.

𝐴 =
⎡⎢⎢
⎣

1 2 4
−3 0 −1

2 1 2

⎤⎥⎥
⎦
and 𝐵 =

⎡⎢⎢
⎣

2 0 0
1 −4 3

−1 3 2

⎤⎥⎥
⎦

Definition 2.2.2 (Matrix Multiplication) If 𝐴 = [𝑎𝑖𝑗] is an 𝑚 × n
matrix and 𝐵 = [𝑏𝑖𝑗] is an n× 𝑝 matrix, then the product 𝐴𝐵 is an
𝑚 × 𝑝 matrix

𝐴𝐵 = [𝑐𝑖𝑗]

where
𝑐𝑖𝑗 =

𝑛
∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗

= 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + 𝑎𝑖3𝑏3𝑗 + ⋯ + 𝑎𝑖𝑛𝑏𝑛𝑗

http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch2q1.html
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Informally speaking,

▶ Vector can be considered as a
record of information.

▶ Matrix can be considered as a
record of a multiple-dimensional
information.

Example 2.2.2 Let Put your answer here!

𝐴 = [ 1 2
3 4

] and 𝐵 = [ 0 1
1 2

]

1. Find 𝐴 + 𝐵 and 𝐵 + 𝐴. Is matrix addition commutative? that is,
𝐴 + 𝐵 = 𝐵 + 𝐴.

2. Find 𝐴𝐵 and 𝐵𝐴. Is matrix multiplication commutative? that is,
𝐴𝐵 = 𝐵𝐴.

Try this Exercise.

Definition 2.2.3 (Vector)

Column vector A matrix has only one column.
Row vector A matrix has only one row.

Let us fix the notations for vectors.

1. Boldface lowercase letters often designate columnmatrices and
row matrices. For instance, u, v, 𝛼1, 𝛼2.

2. A matrix can be partitioned into column vectors.

Discussion: Come back to the example at the beginning of this chap-
ter. How to interpret the result of matrix multiplication below?

⎡⎢⎢
⎣

120 250 305
207 140 419
29 120 190

⎤⎥⎥
⎦

⎡⎢⎢
⎣

2.00
3.00
2.75

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

1828.75
1986.25
940.50

⎤⎥⎥
⎦

Question: What is the total sales of all the three stands?

http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch2q4.html
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Critical thinking: Linear system ⇔ Matrix
equation. Someone claims that linear alge-
bra is a generalization of 𝑎𝑥 = 𝑏.

2: 动词;词义:分块.

Let us try the next exercise as a motivation.

Write down here what you found from this
exercise.

Exercise 2.2.1 Compute

1.
⎡⎢⎢
⎣

0
3
3

⎤⎥⎥
⎦

+ 2
⎡⎢⎢
⎣

3
−7
−9

⎤⎥⎥
⎦

−
⎡⎢⎢
⎣

−6
8

12

⎤⎥⎥
⎦

+ 3
⎡⎢⎢
⎣

6
−5
−9

⎤⎥⎥
⎦

− 2
⎡⎢⎢
⎣

4
8
6

⎤⎥⎥
⎦
.

2.
⎛⎜⎜⎜
⎝

0 3 −6 6 4
3 −7 8 −5 8
3 −9 12 −9 6

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2

−1
3

−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

One application of matrix multiplication is that the linear system

𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + … + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

can be written as the matrix equation 𝐴x = b,

⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥
⎥
⎥
⎦

Let𝐴 = [𝑎𝑖𝑗] be a matrix of size𝑚×𝑛 and let x =
⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2

⋮
𝑥𝑛

⎤
⎥
⎥
⎥
⎦

. Partition2

matrix 𝐴 as 𝐴 = [𝛼1 𝛼2 … 𝛼𝑛].

Critical Thinking: The idea of partition.
Usually we see a matrix as a collection of
column vectors!

Show that

𝑥1𝛼1 + 𝑥2𝛼2 + ⋯ + 𝑥𝑛𝛼𝑛 = 𝐴x

▶ The linear system

𝑥1 + 2𝑥2 + 3𝑥3 = 0
4𝑥1 + 5𝑥2 + 6𝑥3 = 3
7𝑥1 + 8𝑥2 + 9𝑥3 = 6
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Critical thinking The nature of linear sys-
tem is to express a vector as a linear combi-
nation of the other vectors.

What you learned from this example? Share
with us.

▶ The matrix equation.

⎡⎢⎢
⎣

1 2 3
4 5 6
7 8 9

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

0
3
6

⎤⎥⎥
⎦

▶ The vector equation.

𝑥1
⎡⎢⎢
⎣

1
4
7

⎤⎥⎥
⎦

+ 𝑥2
⎡⎢⎢
⎣

2
5
8

⎤⎥⎥
⎦

+ 𝑥3
⎡⎢⎢
⎣

3
6
9

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

0
3
6

⎤⎥⎥
⎦

Theorem 2.2.1 Let

𝐴 =
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥
⎥
⎥
⎦

and 𝐵 =
⎡
⎢
⎢
⎢
⎣

𝑏11 𝑏12 … 𝑏1𝑝
𝑏21 𝑏22 … 𝑏2𝑝
⋮ ⋮ ⋱ ⋮

𝑏𝑛1 𝑏𝑛2 … 𝑏𝑛𝑝

⎤
⎥
⎥
⎥
⎦

.

Partition the matrix 𝐵 as 𝐵 = [𝛽1 𝛽2 … 𝛽𝑝]. Then

𝐴𝐵 = [𝐴𝛽1 𝐴𝛽2 … 𝐴𝛽𝑝]

Proof. It is easy to see that both 𝐴𝐵 and [𝐴𝛽1 𝐴𝛽2 … 𝐴𝛽𝑝]
have size 𝑚 × 𝑝. We next show that

(𝐴𝐵)𝑖𝑗 = [𝐴𝛽1 𝐴𝛽2 … 𝐴𝛽𝑝]𝑖𝑗.

RHS = [𝐴𝛽1 𝐴𝛽2 … 𝐴𝛽𝑝]𝑖𝑗 = [𝐴𝛽𝑗]𝑖 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + … +
𝑎𝑖𝑛𝑏𝑛𝑗 = LHS. Therefore, 𝐴𝐵 = [𝐴𝛽1 𝐴𝛽2 … 𝐴𝛽𝑝].

The theorem have a great consequence.

思维训练：学习矩阵乘法的深层次原因是

什么？将一个矩阵分解成几个矩阵的乘积。

这些矩阵比较特殊，具有明显的特征。体

现的数学思想：将一个复杂问题 (类比矩

阵) 分解成几个简单的阶段性问题（类比

矩阵分解）。通过复合（矩阵乘法），较好

的理解问题的实质。

通俗的讲，你学习数学的意义是：先研究

一个特殊问题。然后学习将一般问题转换

为特殊问题的方式方法，最终解决问题。

该思想在常微分方程中由重要应用!

Brainstorm:

Let 𝐴 =
⎛⎜⎜⎜
⎝

−2 4 −4
1 −1 −1

−2 2 −1

⎞⎟⎟⎟
⎠
. Find a matrix 𝐵 such that

𝐴𝐵 =
⎡⎢⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥
⎦

.

Moreover, verify 𝐵𝐴.
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2.3 Properties of matrix operations

Theorem 2.3.1 If 𝐴, 𝐵, and 𝐶 are 𝑚 × 𝑛 matrices, and 𝑐 and 𝑑 are
scalars, then the properties below are true.

1. 𝐴 + 𝐵 = 𝐵 + 𝐴 Commutative property of addition
2. 𝐴+(𝐵+𝐶) = (𝐴+𝐵)+𝐶 Associative property of addition.
3. (𝑐𝑑)𝐴 = 𝑐(𝑑𝐴) Associative property of multiplication
4. 1𝐴 = 𝐴 Multiplicative identity
5. 𝑐(𝐴 + 𝐵) = 𝑐𝐴 + 𝑐𝐵 Distributive property
6. (𝑐 + 𝑑)𝐴 = 𝑐𝐴 + 𝑑𝐴 Distributive property

One important property of the addition of real numbers is that the
number 0 is the additive identity. That is, 𝑐 + 0 = 𝑐 for any real
number 𝑐. For matrices, a similar property holds. Specifically, if 𝐴 is
an 𝑚 × 𝑛 matrix and 𝑂𝑚𝑛 is the 𝑚 × 𝑛 matrix consisting entirely of
zeros, then 𝐴 + 𝑂𝑚𝑛 = 𝐴. The matrix 𝑂𝑚𝑛 is a zero matrix, and it is
the additive identity for the set of all 𝑚 × 𝑛 matrices.

类比: 数的加法中的数字零与矩阵加法中

的零矩阵.

0𝑚𝑛 =
⎡
⎢
⎢
⎢
⎣

0 0 … 0
0 0 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 0

⎤
⎥
⎥
⎥
⎦

When the size of the matrix is understood, you may denote a zero
matrix simply by 𝑂 or 0.

Theorem 2.3.2 (Properties of Zero Matrices) If𝐴 is an𝑚×𝑛matrix
and 𝑐 is a scalar, then the properties below are true.

1. 𝐴 + 𝑂𝑚𝑛 = 𝐴
2. 𝐴 + (−𝐴) = 𝑂𝑚𝑛
3. If 𝑐𝐴 = 𝑂𝑚𝑛, then 𝑐 = 0 or 𝐴 = 𝑂𝑚𝑛.
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Example 2.3.1 Solve for 𝑋 in the equation 3𝑋 + 𝐴 = 𝐵, where

𝐴 = [ 1 −2
0 3

] and 𝐵 = [ −3 4
2 1

] .

请体会数学证明的严谨性. 我们没有证明

“移项”性质,就不可以使用.

Solution: Try this Exercise.

3𝑋 + 𝐴 = 𝐵
(3𝑋 + 𝐴) + (−𝐴) = 𝐵 + (−𝐴) ( 两边同时加上(−𝐴))
3𝑋 + (𝐴 + (−𝐴)) = 𝐵 − 𝐴 ((由定理2.3.1,第 2条))

3𝑋 + 0𝑚𝑛 = 𝐵 − 𝐴 (由定理2.3.2,第 2条)
3𝑋 = 𝐵 − 𝐴 (由定理2.3.2,第 1条)

1
3(3𝑋) = 1

3(𝐵 − 𝐴) (等式两边同时乘以
1
3)

(1
33)𝑋 = 1

3(𝐵 − 𝐴) (由定理2.3.1,第 3条)

1𝑋 = 1
3(𝐵 − 𝐴) (由定理2.3.1,第 4条)

𝑋 = 1
3(𝐵 − 𝐴)

= [
−4
3 2
2
3

−2
3

]

Properties of matrix multiplications

Theorem 2.3.3 If 𝐴, 𝐵, and 𝐶 are matrices (with sizes such that the
matrix products are defined), and 𝑐 is a scalar, then the properties
below are true.

1. 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶 Associative property of multiplication.
2. 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 Distributive property
3. (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶 Distributive property
4. 𝑐(𝐴𝐵) = (𝑐𝐴)𝐵 = 𝐴(𝑐𝐵)

Proof.

1. Let 𝐴 = [𝑎𝑖𝑗]𝑚𝑛, 𝐵 = [𝑏𝑖𝑗]𝑛𝑝 and 𝐶 = [𝑐𝑖𝑗]𝑝𝑞. To show this
statement, it is enough to show that (𝐴(𝐵𝐶))𝑖𝑗 = ((𝐴𝐵)𝐶)𝑖𝑗.

http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch2q3.html
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3: To show a statement is false, you only
need to give an example.

LHS =
𝑛

∑
𝑘=1

𝑎𝑖𝑘(𝐵𝐶)𝑘𝑗

=
𝑛

∑
𝑘=1

(𝑎𝑖𝑘 (
𝑝

∑
𝑙=1

𝑏𝑘𝑙𝑐𝑙𝑗))

=
𝑛

∑
𝑘=1

(
𝑝

∑
𝑙=1

𝑎𝑖𝑘𝑏𝑘𝑙𝑐𝑙𝑗)

=𝑎𝑖1𝑏11𝑐1𝑗 + 𝑎𝑖1𝑏12𝑐2𝑗 + … + 𝑎𝑖1𝑏1𝑝𝑐𝑝𝑗

+𝑎𝑖2𝑏21𝑐1𝑗 + 𝑎𝑖1𝑏12𝑐2𝑗 + … + 𝑎𝑖2𝑏2𝑝𝑐𝑝𝑗

+ …
+𝑎𝑖𝑛𝑏𝑛1𝑐1𝑗 + 𝑎𝑖𝑛𝑏𝑛2𝑐2𝑗 + … + 𝑎𝑖𝑛𝑏𝑛𝑝𝑐𝑝𝑗

=𝑎𝑖1𝑏11𝑐1𝑗 + 𝑎𝑖2𝑏21𝑐1𝑗 + … + 𝑎𝑖𝑛𝑏𝑛1𝑐1𝑗

+𝑎𝑖1𝑏12𝑐2𝑗 + 𝑎𝑖1𝑏12𝑐2𝑗 + … + 𝑎𝑖𝑛𝑏𝑛2𝑐2𝑗

+𝑎𝑖1𝑏1𝑝𝑐𝑝𝑗 + 𝑎𝑖2𝑏2𝑝𝑐𝑝𝑗 + … + 𝑎𝑖𝑛𝑏𝑛𝑝𝑐𝑝𝑗

=(𝑎𝑖1𝑏11 + 𝑎𝑖2𝑏21 + … + 𝑎𝑖𝑛𝑏𝑛1)𝑐1𝑗

+(𝑎𝑖1𝑏12 + 𝑎𝑖1𝑏12 + … + 𝑎𝑖𝑛𝑏𝑛2)𝑐2𝑗

+(𝑎𝑖1𝑏1𝑝 + 𝑎𝑖2𝑏2𝑝 + … + 𝑎𝑖𝑛𝑏𝑛𝑝)𝑐𝑝𝑗

=(𝐴𝐵)𝑖1𝑐1𝑗 + (𝐴𝐵)𝑖2𝑐2𝑗 + … + (𝐴𝐵)𝑖𝑝𝑐𝑝𝑗

=((𝐴𝐵)𝐶)𝑖𝑗.

2. Practice.
3. Practice.
4. Let 𝐴 = [𝑎𝑖𝑗]𝑚𝑛, 𝐵 = [𝑏𝑖𝑗]𝑛𝑝.We use this property very often in this

course.

It is easy to see that the the
matrices 𝑐(𝐴𝐵), (𝑐𝐴)𝐵 and 𝐴(𝑐𝐵) have the same size. We are
going to show that

(𝑐(𝐴𝐵))𝑖𝑗 = ((𝑐𝐴)𝐵)𝑖𝑗 = (𝐴(𝑐𝐵))𝑖𝑗.

(𝐴𝐵)𝑖𝑗 =
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗, thus (𝑐(𝐴𝐵))𝑖𝑗 = 𝑐(𝐴𝐵)𝑖𝑗 = 𝑐
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗.

((𝑐𝐴)𝐵)𝑖𝑗 =
𝑛

∑
𝑘=1

(𝑐𝑎𝑖𝑘)𝑏𝑘𝑗 = 𝑐
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗.

(𝐴(𝑐𝐵))𝑖𝑗 =
𝑛

∑
𝑘=1

𝑎𝑖𝑘(𝑐𝑏𝑘𝑗) = 𝑐
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗. The statement is

proved.

Commutativity is a strong property for matrix multiplication. How-
ever, it does not hold in general3.



2.3 Properties of Operations 25

Example 2.3.2 Show 𝐴𝐵 and 𝐵𝐴 are not equal for the matrices

𝐴 = [ 1 3
2 −1

] and 𝐵 = [ 2 −1
0 2

]

Solution

𝐴𝐵 = [ 1 3
2 −1

] [ 2 −1
0 2

] = [ 2 5
4 −4

] ,

𝐵𝐴 = [ 2 −1
0 2

] [ 1 3
2 −1

] = [ 0 7
4 −2

] .

Thus 𝐴𝐵 ≠ 𝐵𝐴.

We next show that cancellation property is not valid in general.

Example 2.3.3 Show that 𝐴𝐶 = 𝐵𝐶 , where

𝐴 = [ 1 3
0 1

] , 𝐵 = [ 2 4
2 3

] , 𝐶 = [ 1 −2
−1 2

] .

What is your conclusion of Example 2.3.3?

Identity matrix

A special type of square matrix that has 1’s on the main diagonal and
0 ’s elsewhere is called an identity matrix.

𝐼𝑛 =
⎡
⎢
⎢
⎢
⎣

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

⎤
⎥
⎥
⎥
⎦

When the order of the matrix is understood to be 𝑛, you may denote
𝐼𝑛 simply as 𝐼 .

Theorem 2.3.4 (Properties of the Identity Matrix) If 𝐴 is a matrix
of size 𝑚 × 𝑛, then the properties below are true.

1. 𝐴𝐼𝑛 = 𝐴.
2. 𝐼𝑚𝐴 = 𝐴.
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There is an unexpected results from Theorem 2.3.4. Partition identity
matrix 𝐼𝑛 = [𝑒1 𝑒2 … 𝑒𝑛], where

𝑒1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
⋮
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑒2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
⋮
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, … , 𝑒𝑛 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
⋮
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Example 2.3.4 Let 𝐴 = [𝛼1 𝛼2 … 𝛼𝑛]. Show that 𝐴𝑒𝑖 = 𝛼𝑖.Let 𝐴 =
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

⎤
⎥
⎥
⎥
⎦

and 𝐹 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0 −𝑎𝑛
1 0 ⋯ 0 −𝑎𝑛−1
0 1 ⋯ 0 −𝑎𝑛−2
⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 1 −𝑎1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

𝑀 = 𝑎𝑛1𝐹 𝑛−1+𝑎𝑛−11𝐹 𝑛−2+…+𝑎11𝐸.

1. Show that 𝐴𝑒1 = 𝑀𝑒1.
2. Suppose that 𝐴𝐹 = 𝐹𝐴 from

now on. Show that 𝐴𝑒2 = 𝑀𝑒2.
(Hint: 𝑒2 = 𝐹𝑒1)

3. Show that 𝐴 = 𝑀 .

Definition 2.3.1 If𝐴 is an 𝑛×𝑛matrix and if 𝑘 is a positive integer,
then 𝐴𝑘 denotes the product of 𝑘 copies of 𝐴:

𝐴𝑘 = 𝐴 … 𝐴⏟
𝑘

Example 2.3.5 Let 𝐴 = [ 1 1
0 1

]. Use mathematical induction to

show that

𝐴𝑘 = [ 1 𝑘
0 1

]

In mathematics, the Fibonacci sequence is a sequence in which each
number is the sum of the two preceding ones, that is,

𝐹𝑛+1 = 𝐹𝑛+1 + 𝐹𝑛.

Numbers that are part of the Fibonacci sequence are known as Fi-
bonacci numbers, commonly denoted 𝐹𝑛. the first few values in the
sequence are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

The Fibonacci sequence {𝐹𝑛} can be described by this matrix. Indeed,
for any 𝑛 ∈ ℕ,

[ 𝐹𝑛+2
𝐹𝑛+1

] = [ 1 1
1 0

] [ 𝐹𝑛+1
𝐹𝑛

] = 𝐴𝑛+1 [ 𝐹1
𝐹0

]
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Exercise 2.3.1 Find 𝐴𝑘 if 𝐴 = [ 1 1
1 0

]

Transpose

Definition 2.3.2 Let 𝐴 be a 𝑚 × 𝑛 matrix. The transpose4 4: 转置of 𝐴 is
the 𝑛 × 𝑚 matrix,denoted by 𝐴𝑇 , whose columns are formed from
the corresponding rows of 𝐴.

Theorem 2.3.5 Let 𝐴 and 𝐵 denote matrices whose sizes are appro-
priate for the following sums and products.

1. (𝐴𝑇 )𝑇 = 𝐴
2. (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

3. For any scalar, (𝑟𝐴)𝑇 = 𝑟(𝐴𝑇 )
4. (𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇

In Europe, people study the linear system
like

[𝑥1 𝑥2] [ 1 2
3 4

] = [5 6].

With the notion of transpose, we are able
to solve it in our way 𝐴x = b, that is,

[ 1 3
2 4

] [ 𝑥1
𝑥2

] = [ 5
6

] .

In mathematics, we solve one case, and
then try to convert the others into this case.
It is a great idea!

Proof.

2.4 The inverse of a matrix

Definition 2.4.1 (Inverse of aMatrix) An𝑛×𝑛matrix𝐴 is invertible
(or nonsingular) when there exists an 𝑛 × 𝑛 matrix 𝐵 such that

𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛

where 𝐼𝑛 is the identity matrix of order 𝑛. The matrix 𝐵 is the (mul-
tiplicative) inverse of 𝐴. A matrix that does not have an inverse is
noninvertible (or singular).

Questions: how to show the inverse is
unique?

Theorem 2.4.1 (Uniqueness) If 𝐴 is an invertible matrix, then its
inverse is unique.

Since the inverse is unique, the inverse of𝐴 is denoted by𝐴−1.

Theorem 2.4.2 Let 𝐴 = [ 𝑎 𝑏
𝑐 𝑑

].
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▶ 𝐴 is invertible if and only if 𝑎𝑑 − 𝑏𝑐 ≠ 0.
▶ if 𝑎𝑑 − 𝑏𝑐 ≠ 0, then the inverse is

𝐴−1 = 1
𝑎𝑑 − 𝑏𝑐 [ 𝑑 −𝑏

−𝑐 𝑎
]

Comment: As a math major student, you
should have the mathematical thinking.
For instance, from the definition of invert-
ible, you can show or prove the statement,
not just memorize it.

The method used next is totally different with the one for 𝑛 = 2.

Discussion: Suppose𝐴 is invertible. Are you able to see that𝐴𝐵 = 𝐼𝑛
as 𝑛-linear systems?

Let 𝐵 = [𝛽1, 𝛽2, … , 𝛽𝑛] and 𝐼𝑛 = [e1, e2, … , e𝑛]. 𝐴𝐵 = 𝐼𝑛 can be
read as

𝐴𝐵 = 𝐴[𝛽1, 𝛽2, … , 𝛽𝑛] = [𝐴𝛽1, 𝐴𝛽2, … , 𝐴𝛽𝑛] = [e1, e2, … , e𝑛].

Thus we have consistent linear systems

𝐴𝛽1 = e1, 𝐴𝛽2 = e2, … , 𝐴𝛽𝑛 = e𝑛.

Lemma 2.4.3 Let 𝐴 be a matrix of size 𝑛 × 𝑛 such that the 𝑛 Linear
system 𝐴x = e1, 𝐴x = e2, … , 𝐴x = e𝑛 are consistent. Then for
every b ∈ ℝ𝑛, 𝐴x = b is always consistent.

Proof. For any 𝑖 = 1, 2, … , 𝑛−1 or 𝑛, since the linear system𝐴x = e𝑖
is consistent, we may assume the solution is 𝛽𝑖, that is, 𝐴𝛽𝑖 = 𝑒𝑖. Let

b =
⎡
⎢
⎢
⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑛

⎤
⎥
⎥
⎥
⎦

. Thus

b = 𝑏1e1 + 𝑏2e2 + … + 𝑏𝑛e𝑛.

𝐴(𝑏1𝛽1 + 𝑏2𝛽2 + … + 𝑏𝑛𝛽𝑛) = 𝐴(𝑏1𝛽1) + 𝐴(𝑏2𝛽2) + … + 𝐴(𝑏𝑛𝛽𝑛)
= 𝑏1(𝐴𝛽1) + 𝑏2(𝐴𝛽2) + … + 𝑏𝑛(𝐴𝛽𝑛)
= 𝑏1e1 + 𝑏2e2 + … + 𝑏𝑛e𝑛

= b

Recall from Theorem 1.3.2 that the linear system 𝐴x = b is always
consistent, then the coefficient matrix 𝐴 can be reduced to 𝐼𝑛.
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Algorithm for finding 𝐴−1

The key point here is: if 𝐴 is row equivalent to 𝐼 , then [𝐴 𝐼] is row
equivalent to [𝐼 𝐴−1]. Otherwise, 𝐴 does not have an inverse.

Example: Find the inverse of the matrix 𝐴 =
⎡⎢⎢
⎣

1 −1 0
1 0 −1

−6 2 3

⎤⎥⎥
⎦

.

Example: Show the matrix 𝐴 =
⎡⎢⎢
⎣

1 2 0
3 −1 2

−2 3 −2

⎤⎥⎥
⎦
has no inverse.

Theorem 2.4.4 If 𝐴 is an invertible matrix, 𝑘 is a positive integer,
and 𝑐 is a nonzero scalar, then 𝐴−1, 𝐴𝑘, 𝑐𝐴, and 𝐴𝑇 are invertible
and the statements below are true.

1. (𝐴−1)−1 = 𝐴
2. (𝐴𝑘)−1 = 𝐴−1𝐴−1 ⋯ 𝐴−1 = (𝐴−1)𝑘

3. (𝑐𝐴)−1 = 1
𝑐 𝐴−1

4. (𝐴𝑇 )−1 = (𝐴−1)𝑇

Theorem 2.4.5 If 𝐴 and 𝐵 are invertible matrices of order 𝑛, then
𝐴𝐵 is invertible and

(𝐴𝐵)−1 = 𝐵−1𝐴−1

Corollary 2.4.6 If 𝐴𝑖, 𝑖 = 1, 2, … , 𝑛 are invertible square matrices
of same size, then

(𝐴1𝐴2𝐴3 ⋅ ⋅𝐴𝑛)−1 = 𝐴−1
𝑛 ⋅ ⋅𝐴−1

3 𝐴−1
2 𝐴−1

1

Theorem 2.4.7 If 𝐶 is an invertible matrix, then the properties be-
low are true.

1. If 𝐴𝐶 = 𝐵𝐶 , then 𝐴 = 𝐵.
2. If 𝐶𝐴 = 𝐶𝐵, then 𝐴 = 𝐵.

Theorem 2.4.8 If 𝐴 is an invertible 𝑛 × 𝑛matrix, then for each b in
ℝ𝑛, the equation 𝐴x = b has the unique solution x = 𝐴−1b.

Discussion: Let 𝐴 be an invertible 𝑛 × 𝑛
matrix. Sometimes, the inverse question of
Theorem 2.4.8 will be asked. That is, if the
matrix equation 𝐴𝕩 = b is always consis-
tent for any b ∈ ℝ𝑛, is 𝐴 invertible?
hint: 𝐴 is invertible if and only if 𝐴 is row
reduced to the identity matrix.
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2.5 Elementary matrices

Elementary Row Operations

There are three elementary row operations for matrices listed be-
low.

1. (Replacement) Replace one row by the sum of itself and a
multiple of another row.

2. (Interchange) Interchange two row.
3. (Scaling) Multiply all entries in a row by a nonzero constant.

Similarly one can define elementary column operations.

Elementary Column Operations

There are three elementary column operations for matrices listed
below.

1. (Replacement) Replace one column by the sum of itself and
a multiple of another column.

2. (Interchange) Interchange two columns.
3. (Scaling) Multiply all entries in a column by a nonzero con-
stant.

Definition 2.5.1 (Elementary Matrix) An 𝑛×𝑛matrix is an elemen-
tary matrix when it can be obtained from the identity matrix 𝐼𝑛 by
a single elementary row operation.

Question: Which of the matrices below are elementary matrix? For
those that are, describe the corresponding elementary row operation.

a.
⎡⎢⎢
⎣

1 0 0
0 3 0
0 0 1

⎤⎥⎥
⎦

b. [ 1 0 0
0 1 0

] c.
⎡⎢⎢
⎣

1 0 0
0 1 0
0 0 0

⎤⎥⎥
⎦

d.
⎡⎢⎢
⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥
⎦

e. [ 1 0
2 1

] f.
⎡⎢⎢
⎣

1 0 0
0 2 0
0 0 −1

⎤⎥⎥
⎦
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There are three types of elementary matrix. We denote

𝐸(𝑖, 𝑗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
⋱

1
0 ⋯ 1 𝑖 − th row
⋮ ⋱ ⋮
1 ⋯ 0 𝑗 − th row

1
⋱

1

,

𝐸(𝑖; 𝑘) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
⋱

1
𝑘 𝑖 − th row

1
⋱

1

,

𝐸(𝑖, 𝑗; 𝑘) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
⋱

1 𝑖 − th row
⋮ ⋱
𝑘 ⋯ 1 𝑗 − th row

⋱
1

.

Theorem 2.5.1 (Elementary Matrices Are Invertible) If 𝐸 is an ele-
mentary matrix, then 𝐸−1 exists and is an elementary matrix.

Proof: (Direct computation)

1. 𝐸−1(𝑖, 𝑗) = 𝐸(𝑖, 𝑗).
2. 𝐸−1(𝑖; 𝑘) = 𝐸(𝑖; 1

𝑘).
3. 𝐸−1(𝑖, 𝑗; 𝑘) = 𝐸(𝑖, 𝑗; −𝑘)
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Example 2.5.1 Verify

(𝑎)
⎡⎢⎢
⎣

0 1 0
1 0 0
0 0 1

⎤⎥⎥
⎦

⎡⎢⎢
⎣

0 2 1
1 −3 6
3 2 −1

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

1 −3 6
0 2 1
3 2 −1

⎤⎥⎥
⎦

(𝑏)
⎡⎢⎢
⎣

1 0 0
0 1

2 0
0 0 1

⎤⎥⎥
⎦

⎡⎢⎢
⎣

1 0 −4 1
0 2 6 −4
0 1 3 1

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

1 0 −4 1
0 1 3 −2
0 1 3 1

⎤⎥⎥
⎦

(𝑐)
⎡⎢⎢
⎣

1 0 0
2 1 0
0 0 1

⎤⎥⎥
⎦

⎡⎢⎢
⎣

1 0 −1
−2 −2 3

0 4 5

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

1 0 −1
0 −2 1
0 4 5

⎤⎥⎥
⎦

Exercise: Fill the blank below.

(1).
⎡⎢⎢
⎣

0 2 1
1 −3 6
3 2 −1

⎤⎥⎥
⎦

⎡⎢⎢
⎣

0 1 0
1 0 0
0 0 1

⎤⎥⎥
⎦

= .

(2).
⎡⎢⎢
⎣

1 0 −4
0 2 6
0 1 3

⎤⎥⎥
⎦

⎡⎢⎢
⎣

1 0 0
0 1

2 0
0 0 1

⎤⎥⎥
⎦

= .

(3).
⎡⎢⎢
⎣

1 0 −1
−2 −2 3

0 4 5

⎤⎥⎥
⎦

⎡⎢⎢
⎣

1 0 0
2 1 0
0 0 1

⎤⎥⎥
⎦

= .

Theorem 2.5.2 (Representing Elementary Row(Column)Operations)
Let𝐴 be an𝑚×𝑛matrix. Let 𝐸 be the elementary matrix obtained
by performing an elementary row(column) operation on 𝐼𝑚(𝐼𝑛). If
that same elementary row(column) operation is performed on 𝐴,
then the resulting matrix is the product 𝐸𝐴(𝐴𝐸).

Why this theorem is so important? We can
write the elementarymatrix operations into
matrix multiplication. The latter can be un-
derstood by the computer!

Example 2.5.2 (Using Elementary Matrices) Find a sequence of el-
ementary matrices that can be used to write the matrix 𝐴 in row-
echelon form.

𝐴 =
⎡⎢⎢
⎣

0 1 3 5
1 −3 0 2
2 −6 2 0

⎤⎥⎥
⎦
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Definition 2.5.2 (Row Equivalence) Let𝐴 and𝐵 be𝑚×𝑛matrices.
Matrix 𝐵 is row-equivalent to 𝐴 when there exists a finite number
of elementary matrices 𝐸1, 𝐸2, … , 𝐸𝑘 such that

𝐵 = 𝐸𝑘𝐸𝑘−1 ⋯ 𝐸2𝐸1𝐴

Theorem 2.5.3 (A Property of Invertible Matrices) A square matrix
𝐴 is invertible if and only if it can be written as the product of
elementary matrices, that is,

𝐴 = 𝐸𝑘𝐸𝑘−1 ⋯ 𝐸2𝐸1,

where 𝐸𝑖 are elementary matrices.

Corollary 2.5.4 A square matrix 𝐴 is invertible if and only if it row
equivalent to identity matrix.

Example: Find a sequence of elementary matrices whose product is
the nonsingular matrix

𝐴 = [ −1 −2
3 8

]

Theorem 2.5.5 (Equivalent Conditions) If𝐴 is an 𝑛×𝑛matrix, then
the statements below are equivalent.
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1. 𝐴 is invertible.
2. 𝐴x = b has a unique solution for every 𝑛 × 1 column matrix

b.
3. 𝐴x = 0 has only the trivial solution.
4. 𝐴 is row-equivalent to 𝐼𝑛.
5. A can be written as the product of elementary matrices.

1. Identity matrix: 𝐼𝑛
2. Scalar matrix: 𝜆𝐼𝑛
3. Diagonal matrix 𝐴 such that 𝑎𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗.
4. Elementary matrices: 𝐸(𝑖, 𝑗), 𝐸(𝑖; 𝑘) and 𝐸(𝑖, 𝑗; 𝑘).
5. Zero matrix.
6. Upper triangular matrix: 𝑎𝑖𝑗 = 0 for all 𝑖 > 𝑗.
7. Lower triangular matrix: 𝑎𝑖𝑗 = 0 for all 𝑖 < 𝑗.
8. Strictly Upper triangular matrix: 𝑎𝑖𝑗 = 0 for all 𝑖 ≥ 𝑗.
9. Strictly lower triangular matrix: 𝑎𝑖𝑗 = 0 for all 𝑖 ≤ 𝑗.

Exercise: Let 𝐴 be a 𝑛 × 𝑛 strictly upper triangular matrix. Show that
𝐴𝑛 = 0.
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Motivation

The purpose of this section is to define the determinant of the square
matrices of2 × 2 and 3 × 3.

linear system in two variables

Solve the linear system

{ 𝑎11𝑥 + 𝑎12𝑦 = 𝑏1
𝑎21𝑥 + 𝑎22𝑦 = 𝑏2

1. We may assume that 𝑎11 ≠ 0 and 𝑎21 ≠ 0. Otherwise, the
linear system is equivalent to an linear system in echelon form
which is easy to solve. Then we obtain an equivalent linear
system

{ 𝑎21𝑎11𝑥 + 𝑎21𝑎12𝑦 = 𝑎21𝑏1 (1)
𝑎11𝑎21𝑥 + 𝑎11𝑎22𝑦 = 𝑎11𝑏2 (2),

2. equation (2) subtracts equation (1) gives (an equivalent linear
system)

{ 𝑎21𝑎11𝑥 + 𝑎21𝑎12𝑦 = 𝑎21𝑏1
(𝑎11𝑎22 − 𝑎12𝑎21) 𝑦 = 𝑎11𝑏2 − 𝑎21𝑏1,

3. If 𝑎11𝑎22 − 𝑎12𝑎21 ≠ 0, then 𝑦 = 𝑎11𝑏2−𝑏1𝑎21
𝑎11𝑎22−𝑎12𝑎21

.

4. (Question:) Figure out the value of 𝑥.

▶ It seems that 𝑎11𝑎22 − 𝑎12𝑎21 is critical for the linear system.
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▶ Define the determinant of the 2 × 2 matrix [ 𝑎11 𝑎12
𝑎21 𝑎22

] by
How to memorize it?

𝑎11 𝑎12

𝑎21 𝑎22

∣ 𝑎11 𝑎12
𝑎21 𝑎22

∣ = 𝑎11𝑎22 − 𝑎12𝑎21,

▶ The solution can be expressed as

𝑥 =
∣𝑏1 𝑎12
𝑏2 𝑎22

∣

∣𝑎11 𝑎12
𝑎21 𝑎22

∣
= 𝐷1

𝐷 , 𝑦 =
∣𝑎11 𝑏1
𝑎21 𝑏2

∣

∣𝑎11 𝑎12
𝑎21 𝑎22

∣
= 𝐷2

𝐷 .

Solve

{ 3𝑥1 − 2𝑥2 = 12
2𝑥1 + 𝑥2 = 1

linear system of three variables

For the linear system in three variables,

⎧{
⎨{⎩

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 = 𝑏1
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 = 𝑏2
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 = 𝑏3

,

If 𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33 − 𝑎13𝑎22𝑎31 ≠ 0, then

the linear system has a unique solution:

In 2022, I thought it is not easy to see how
to get this formula! With the help of Sage-
Math, it seems a easy question.

𝑥 = 𝑏1𝑎22𝑎33+𝑎12𝑎23𝑏3+𝑎13𝑏2𝑎32−𝑏1𝑎23𝑎32−𝑎12𝑏2𝑎33−𝑎13𝑎22𝑏3
𝑎11𝑎22𝑎33+𝑎12𝑎23𝑎31+𝑎13𝑎21𝑎32−𝑎11𝑎23𝑎32−𝑎12𝑎21𝑎33−𝑎13𝑎22𝑎31

𝑦 = 𝑎11𝑏2𝑎33+𝑏1𝑎23𝑎31+𝑎13𝑎21𝑏3−𝑎11𝑎23𝑏3−𝑏1𝑎21𝑎33−𝑎13𝑏2𝑎31
𝑎11𝑎22𝑎33+𝑎12𝑎23𝑎31+𝑎13𝑎21𝑎32−𝑎11𝑎23𝑎32−𝑎12𝑎21𝑎33−𝑎13𝑎22𝑎31

𝑧 = 𝑎11𝑎22𝑏3+𝑎12𝑏2𝑎31+𝑏1𝑎21𝑎32−𝑎11𝑏2𝑎32−𝑎12𝑎21𝑏3−𝑏1𝑎22𝑎31
𝑎11𝑎22𝑎33+𝑎12𝑎23𝑎31+𝑎13𝑎21𝑎32−𝑎11𝑎23𝑎32−𝑎12𝑎21𝑎33−𝑎13𝑎22𝑎31

Define the determinant of 3 × 3 matrix

A way to memorize the definition of
determinant.

𝑎11 𝑎12 𝑎13 𝑎11 𝑎12

𝑎21 𝑎22 𝑎23 𝑎21 𝑎22

𝑎31 𝑎32 𝑎33 𝑎31 𝑎32

∣
∣
∣
∣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

∣
∣
∣
∣
=𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32

− 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33 − 𝑎13𝑎22𝑎31

An observation
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𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33 − 𝑎13𝑎22𝑎31

=𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) + 𝑎12(𝑎23𝑎31 − 𝑎21𝑎33) + 𝑎13(𝑎21𝑎32 − 𝑎22𝑎31)

=𝑎11 ∣𝑎22 𝑎23
𝑎32 𝑎33

∣ − 𝑎12 ∣𝑎21 𝑎23
𝑎31 𝑎33

∣ + 𝑎13 ∣𝑎21 𝑎22
𝑎31 𝑎32

∣ .

Therefore Critical thinking: We can define determi-
nants of 3 × 3 matrices in terms of deter-
minants of 2×2matrices. This encourages
us to define determinants of 4 × 4matrices
in terms of determinants of 3 × 3 matrices.
Inductively we can define the determinants
of 𝑛 × 𝑛 matrices.

∣
∣
∣
∣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

∣
∣
∣
∣
= 𝑎11 ∣𝑎22 𝑎23

𝑎32 𝑎33
∣ − 𝑎12 ∣𝑎21 𝑎23

𝑎31 𝑎33
∣ + 𝑎13 ∣𝑎21 𝑎22

𝑎31 𝑎32
∣

Area and Volumes

Compute the area of a parallelgram determined by vectors ⟨1, 3⟩ and
⟨4, 1⟩.

Figure 3.1: Geometry interpretation of de-
terminants

One way to get the area is to compute the absolute value of the deter-
minant of the matrix

𝐴 = (1 3
4 1

) .

Here is another example.

3.1 Definition of determinant
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Definition 3.1.1 (Minors and Cofactors of a square matrix) If 𝐴
is a square matrix, then the minor 𝑀𝑖𝑗 of the entry 𝑎𝑖𝑗 is the de-
terminant of the matrix obtained by deleting the 𝑖-th row and 𝑗-th
column of 𝐴. The cofactor 𝐶𝑖𝑗 of the entry 𝑎𝑖𝑗 is 𝐶𝑖𝑗 = (−1)𝑖+𝑗𝑀𝑖𝑗.

Example 3.1.1 Let 𝐴 =
⎡⎢⎢
⎣

3 1 −4
2 5 6
1 4 8

⎤⎥⎥
⎦
. Find the minor 𝑀11, 𝑀12,

𝑀13, 𝐶11, 𝐶12 and 𝐶13, respectively.

Definition 3.1.2 For 𝑛 ≥ 2, the determinant of an 𝑛 × 𝑛 square
matrix 𝐴 = [𝑎𝑖𝑗] is defined as

det(𝐴) = 𝑎11𝑀11 − 𝑎12𝑀12 + … + (−1)𝑛+1𝑎1𝑛𝑀1𝑛

=
𝑛

∑
𝑗=1

(−1)1+𝑗𝑎1𝑗𝑀1𝑗

Example 3.1.2 Using definition compute the determinants of the
matrices below, respectively.

𝐴 =
⎡⎢⎢
⎣

3 1 −4
2 5 6
1 4 8

⎤⎥⎥
⎦

, 𝐵 =
⎡
⎢
⎢
⎢
⎣

3 −7 8 9
0 2 −5 7
0 0 1 5
0 0 0 4

⎤
⎥
⎥
⎥
⎦

.
Observation. det(𝐵) equals to the product
of diagonal entries.

There is a better way to compute the determinant of a square ma-
trix.

Theorem 3.1.1 The determinant of an 𝑛 × 𝑛 matrix 𝐴 can be com-
puted by a cofactor expansion across any row or down any column.
The expansion across the 𝑖 th row using the cofactors is

det𝐴 = 𝑎𝑖1𝐶𝑖1 + 𝑎𝑖2𝐶𝑖2 + ⋯ + 𝑎𝑖𝑛𝐶𝑖𝑛

The cofactor expansion down the 𝑗 th column is

det𝐴 = 𝑎1𝑗𝐶1𝑗 + 𝑎2𝑗𝐶2𝑗 + ⋯ + 𝑎𝑛𝑗𝐶𝑛𝑗Toughest Question so far: How to prove the
theorem?
Vote: Should we prove this theorem?
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Example 3.1.3 Compute

∣
∣
∣
∣
∣

5 −7 2 2
0 3 0 −4

−5 −8 0 3
0 5 0 −6

∣
∣
∣
∣
∣

.

Corollary 3.1.2 Let 𝐴 be an 𝑛 × 𝑛 matrix. If there is a zero row or
zero column of 𝐴, then det(𝐴) = 0.

Next, we give the definitions of upper and lower triangular matri-
ces.

1. Upper triangular matrices.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1,𝑛−1 𝑎1𝑛
0 𝑎22 𝑎23 ⋯ 𝑎2,𝑛−1 𝑎2𝑛
0 0 𝑎33 ⋯ 𝑎3,𝑛−1 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑎𝑛−1,𝑛−1 𝑎𝑛−1,𝑛
0 0 0 ⋯ 0 𝑎𝑛𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2. Lower triangular matrices 𝐴 = [𝑎𝑖𝑗] with 𝑎𝑖𝑗 = 0 for all 𝑖 < 𝑗.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎11 0 0 ⋯ 0 0
𝑎21 𝑎22 0 ⋯ 0 0
𝑎31 𝑎32 𝑎33 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑎𝑛−1,1 𝑎𝑛−1,2 𝑎𝑛−1,3 ⋯ 𝑎𝑛−1,𝑛−1 0
𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3 ⋯ 0 𝑎𝑛,𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Example 3.1.4 Compute the determinants of the upper and lower
triangular matrices, respectively. Briefly explain your method.

Example 3.1.5 Compute the determinants of the elementary matri-
ces 𝐸(𝑖, 𝑗), 𝐸(𝑖; 𝑘) and 𝐸(𝑖, 𝑗; 𝑘), respectively.

Critical thinking: a square matrix is
row equivalent to an upper triangular
matrix! that is, there exist elementary
matrices 𝐸1, 𝐸2, … , 𝐸𝑛 such that
𝐸𝑛𝐸𝑛−1 … 𝐸1𝐴 is an upper triangular
matrix.

Exercise 3.1.1 Compute the determinant of the matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0 𝑎1𝑛
0 0 ⋯ 𝑎2,𝑛−1 0
⋮ ⋮ ⋱ ⋮ ⋮
0 𝑎𝑛−1,2 ⋯ 0 0

𝑎𝑛1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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3.2 Row operations and Determinant.

Lemma 3.2.1 If two rows of a matrix 𝐴 are equal, then det(𝐴) = 0.

This lemma can be proved by mathematical induction.

Theorem 3.2.2 (Elementary RowOperations and determinants) Let
𝐴 be a square matrix.

1. If one row of 𝐴 is multiplied by 𝑘 to produce 𝐵, then

det(𝐵) = 𝑘 det(𝐴).

2. If a multiple of one row of 𝐴 is added to another row to
produce a matrix 𝐵, then

det(𝐵) = det(𝐴).

3. If two rows of 𝐴 are interchanged to produce 𝐵, then

det(𝐵) = − det(𝐴).

Interpretation of Theorem 3.2.2

Let 𝐴 be a square matrix and 𝐸 is an elementary matrix. Then

det(𝐸𝐴) = det(𝐸) det(𝐴).

Corollary 3.2.3 Let 𝐴 be a square matrix and 𝐸1, 𝐸2, … , 𝐸𝑚 are
elementary matrices. Then

det(𝐸𝑚𝐸𝑚−1 … 𝐸1𝐴) = det(𝐸𝑚) det(𝐸𝑚−1) … det(𝐸1) det(𝐴).

Critical thinking: It is more efficient to com-
pute the determinant of a matrix through it
is echelon form.

Corollary 3.2.4 (Determinant of a Scalar Multiple of a Matrix) If 𝐴
is a square matrix of order 𝑛 and 𝑐 is a scalar, then the determinant
of 𝑐𝐴 is det(𝑐𝐴) = 𝑐𝑛 det(𝐴)

Example 3.2.1 Compute det(𝐴), where 𝐴 =
⎡⎢⎢
⎣

1 −4 2
−2 8 −9
−1 7 0

⎤⎥⎥
⎦
.

Compute the determinant of the matrix 𝐴,

where 𝐴 =
⎡
⎢
⎢
⎢
⎣

2 −8 6 8
3 −9 5 10

−3 0 1 −2
1 −4 0 6

⎤
⎥
⎥
⎥
⎦
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3.3 Properties of Determinants

Recall that A square matrix 𝐴 is invertible if and only if it can be
written as the product of elementary matrices. Thus it follows from
Corollary 3.2.3 that

Theorem 3.3.1 A square matrix 𝐴 is invertible iff det(𝐴) ≠ 0.

Theorem 3.3.2 (Determinant of a Matrix Product) If 𝐴 and 𝐵 are
square matrices of order 𝑛, then det(𝐴𝐵) = det(𝐴) det(𝐵).

The next corollary follows from Theorem 3.3.2.

Corollary 3.3.3 (Determinant of an Inverse Matrix) If 𝐴 is an 𝑛 × 𝑛
invertible matrix, then det (𝐴−1) = 1

det(𝐴) .

Example 3.3.1 Use two ways to compute |𝐴−1|, where

𝐴 =
⎡⎢⎢
⎣

3 1 −2
2 0 0

−4 −1 5

⎤⎥⎥
⎦

.

Example 3.3.2 Let 𝐴 =
⎡⎢⎢
⎣

1 0 3
0 −1 2
2 1 0

⎤⎥⎥
⎦
, and 𝐵 be a 3 × 3 matrix

whose determinant is −2.

1. Find det(𝐴).
2. Find det(2𝐴).
3. Find ∣𝐴−1∣.
4. Find det(𝐴3).
5. Find det(𝐴2𝐵−3).

Determinant of a Transpose

Theorem 3.3.4 If 𝐴 is a square matrix, then

det(𝐴) = det (𝐴𝑇 )
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Conditions That Yield a Zero Determinant

If𝐴 is a square matrix and any one of the conditions below is true,
then det(𝐴) = 0.

1. An entire row (or an entire column) consists of zeros.
2. Two rows (or columns) are equal.
3. One row (or column) is a multiple of another row (or col-
umn).

Observation: the second and third condi-
tions yield a zero row (column) after the el-
ementary row(column) operation: replace-
ment.

3.4 Cramer’s Rule

Let 𝐴 = [𝑎𝑖𝑗] be an 𝑛 × 𝑛 matrix and |𝐴| = 𝐷.

Observation: Compute the determinant of the matrix

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛
⋮

𝑎𝑖1 𝑎𝑖2 𝑎𝑖3 … 𝑎𝑖𝑛 𝑖 − th row
⋮

𝑎𝑖1 𝑎𝑖2 𝑎𝑖3 … 𝑎𝑖𝑛 𝑗 − th row
⋮

𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 … 𝑎𝑛𝑛

Note that you should consider the cases 𝑖 = 𝑗 and 𝑖 ≠ 𝑗.

Lemma 3.4.1 Let 𝐴 be an 𝑛 × 𝑛 matrix and |𝐴| = 𝐷.

𝑎𝑖1𝐶𝑟1 + 𝑎𝑖2𝐶𝑟2 + ⋯ + 𝑎𝑖𝑛𝐶𝑟𝑛 = { 𝐷, if 𝑖 = 𝑟
0, if 𝑖 ≠ 𝑟

Let 𝐴 be an 𝑛 × 𝑛 matrix and |𝐴| = 𝐷.
Compute

𝑎1𝑖𝐶1𝑗 + 𝑎2𝑖𝐶2𝑗 + ⋯ + 𝑎𝑛𝑖𝐶𝑛𝑗.

Example 3.4.1 Let 𝐴 =
∣
∣
∣
∣
∣

3 2 1 −2
0 1 3 0
4 −6 0 5

−1 3 −2 1

∣
∣
∣
∣
∣

.

Find

1. 3𝐶41 + 4𝐶42 − 5𝐶43 − 2𝐶44.

2. 𝑀23 + 2𝑀33 + 3𝑀43.

3. 3𝐶31 + 2𝐶32 + 𝐶33 − 2𝐶34.
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This lemma has two unexpected consequences: the second way to find
the inverse of an invertible matrix and solving linear system.

Inverse of a matrix

Let 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋮
𝑎𝑖1 𝑎𝑖2 … 𝑎𝑖𝑛
⋮ ⋮ ⋮

𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Define the adjoint matrix of 𝐴,

denoted by adj(𝐴),

adj(𝐴) =
⎡
⎢
⎢
⎢
⎣

𝐶11 𝐶21 ⋯ 𝐶𝑛1
𝐶12 𝐶22 … 𝐶𝑛2

⋮ ⋮ ⋮
𝐶1𝑛 𝐶2𝑛 ⋯ 𝐶𝑛𝑛

⎤
⎥
⎥
⎥
⎦

.

Theorem 3.4.2 If 𝐴 is an 𝑛 × 𝑛 invertible matrix, then

𝐴−1 = 1
det(𝐴) adj(𝐴).

Critical thinking: Compute 𝐴 adj(𝐴) and adj(𝐴)𝐴, respectively.

Cramer’s rule

Theorem 3.4.3 Let 𝐴 be a square matrix of size 𝑛 and det(𝐴) ≠ 0.
The linear system 𝐴x = b has a unique solution

⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥
⎥
⎥
⎦

= 1
det(𝐴) adj(𝐴)b

Objective: Find another way to compute 𝑥𝑖.

𝐴x = b

x =
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Then

𝑥𝑖 = [ 1
det(𝐴) adj(𝐴)b]𝑖 = 1

det(𝐴)(𝑏1𝐶1𝑖 + 𝑏2𝐶2𝑖 + … + 𝑏𝑛𝐶𝑛𝑖)

=

For any 𝑛 × 𝑛 matrix 𝐴 and any b ∈ ℝ𝑛, let 𝐴𝑖(b) be the matrix
obtained from 𝐴 by replacing column 𝑖 by the vector b.

𝐴𝑖(b) = [a1 ⋯ b ⋯ a𝑛]
↑
col 𝑖

Theorem 3.4.4 (Cramer’s Rule) Let 𝐴 be an invertible 𝑛 × 𝑛matrix.
For any b in ℝ𝑛, the unique solution x of 𝐴x = b has entries given
by

𝑥𝑖 = det𝐴𝑖(b)
det𝐴 , 𝑖 = 1, 2, … , 𝑛
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Vector space is a set of objects which satisfy 10 axioms1

1: 公理.公理无需证明

. The objects
are called vectors. Vector space plays the role as the real numbers in
Calculus. The set of all column (row) vectors with vector addition and
scalar multiplication is a vector space, denoted by ℝ𝑛. That is,

ℝ𝑛 =

⎧{{
⎨{{⎩

⎡
⎢
⎢
⎢
⎣

𝑎1
𝑎2

⋮
𝑎𝑛

⎤
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣

𝑎𝑖 ∈ ℝ

⎫}}
⎬}}⎭

, with the operations

⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑥1 + 𝑦1
𝑥2 + 𝑦2

⋮
𝑥𝑛 + 𝑦𝑛

⎤
⎥
⎥
⎥
⎦

and 𝑐
⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑐𝑥1
𝑐𝑥2

⋮
𝑐𝑥𝑛

⎤
⎥
⎥
⎥
⎦

.

Motivation: Vectors in the plane

Observations

Let u, v, and w be vectors in the plane, and let 𝑐 and 𝑑 be scalars.
Then the following ten equations hold.

1. u + v is a vector in the plane.
2. u + v = v + u
3. (u + v) + w = u + (v + w)
4. u + 0 = u
5. u + (−u) = 0
6. 𝑐u is a vector in the plane.
7. 𝑐(u + v) = 𝑐u + 𝑐v
8. (𝑐 + 𝑑)u = 𝑐u + 𝑑u
9. 𝑐(𝑑u) = (𝑐𝑑)u
10. 1(u) = u

Theorem 4.0.1 Let v be a vector in ℝ𝑛, and let 𝑐 be a scalar. Then
the properties below are true.

1. The additive identity is unique. That is, if v + u = v, then
u = 0.
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2. The additive inverse of v is unique. That is, if v+u = 0, then
u = −v.

3. 0v = 0
4. 𝑐0 = 0
5. If 𝑐v = 0, then 𝑐 = 0 or v = 0.
6. −(−v) = v.

4.1 Vector Space ℝ𝑛

Contents

Linear Combinations . 46
Linear independent . 46
Span . . . . . . . . 47

In this section, all vectors are in ℝ𝑛.

Linear Combinations

An important type of problem in linear algebra involves writing one
vector x as the sum of scalar multiples of other vectors v1, v2, …, and
v𝑛. That is, for scalars 𝑐1, 𝑐2, … , 𝑐𝑛

x = 𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑛v𝑛

The vector x is called a linear combination of the vectors v1, v2, …,
and v𝑛 with weight 𝑐1, 𝑐2, … , 𝑐𝑛.

Example 4.1.1 Let vectors x = (−1, −2, −2), u = (0, 1, 4), v =
(−1, 1, 2), and w = (3, 1, 2) in ℝ3. Find scalars 𝑎, 𝑏, and 𝑐 such that

x = 𝑎u + 𝑏v + 𝑐w

Example 4.1.2

Given that
⎡⎢⎢
⎣

2 2 −3 −16
1 2 −2 −14
1 1 −1 −6

⎤⎥⎥
⎦

rref−⟶
⎡⎢⎢
⎣

1 0 0 2
0 1 0 −4
0 0 1 4

⎤⎥⎥
⎦
Write

.
⎡⎢⎢
⎣

−16
−14
−6

⎤⎥⎥
⎦
as a linear combination of

⎡⎢⎢
⎣

2
1
1

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

2
2
1

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

−3
−2
−1

⎤⎥⎥
⎦
.⎡⎢⎢

⎣

−16
−14
−6

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

2
1
1

⎤⎥⎥
⎦

+
⎡⎢⎢
⎣

2
2
1

⎤⎥⎥
⎦

+
⎡⎢⎢
⎣

−3
−2
−1

⎤⎥⎥
⎦

Linear independent

Definition 4.1.1 An indexed set of vectors {v1, … , v𝑝} in ℝ𝑛 is said
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to be linearly independent if the vector equation

𝑥1v1 + 𝑥2v2 + ⋯ + 𝑥𝑝v𝑝 = 0

has only the trivial solution. The set {v1, … , v𝑝} is said to be lin-
early dependent if there exist weights 𝑐1, … , 𝑐𝑝, not all zero, such
that

𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑝v𝑝 = 0

Example 4.1.3 Show that
⎧{
⎨{⎩

⎡⎢⎢
⎣

1
1
1

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

3
0

−1

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

0
6
1

⎤⎥⎥
⎦

⎫}
⎬}⎭
linear inde-

pendent.

Span

Definition 4.1.2 If v1, v2, … , v𝑝 are in ℝ𝑛, then the set of all lin-
ear combinations of v1, v2, … , v𝑝 is denoted by Span{v1, v2, … , v𝑝}.
That is, Span{v1, v2, … , v𝑝} is the collection of all vectors that can
be written in the form

{𝑐1v1 + 𝑐2v2 + … + 𝑐𝑝v𝑝|𝑐1, 𝑐2, … , 𝑐𝑝 ∈ ℝ}.

Example 4.1.4 show ℝ3 = Span
⎧{
⎨{⎩

⎡⎢⎢
⎣

1
1
1

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

3
0

−1

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

0
6
1

⎤⎥⎥
⎦

⎫}
⎬}⎭
.

Basis

Definition 4.1.3 A basis for ℝ𝑛 is a linearly independent set that
spans ℝ𝑛.

Example 4.1.5 Is
⎧{
⎨{⎩

⎡⎢⎢
⎣

1
−4
−3

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

3
2

−2

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

4
−6
−7

⎤⎥⎥
⎦

⎫}
⎬}⎭
a basis of ℝ3?

Example 4.1.6 Is
⎧{{
⎨{{⎩

⎡
⎢
⎢
⎢
⎣

1
−4
−3

0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

3
2

−2
1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

4
−6
−7

2

⎤
⎥
⎥
⎥
⎦

⎫}}
⎬}}⎭

a basis of ℝ4?
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4.2 Abstract Vector Space

Definition 4.2.1 A vector space is a nonempty set 𝑉 of objects,
called vectors, on which are defined two operations, called addi-
tion and multiplication by scalars (real number), subject to the ten
axioms list below. The axioms must hold for all vector u, v, and w
in 𝑉 and for all scalars 𝑐 and 𝑑.

1. The sum of u and v, denoted by u + v, is in 𝑉 .
2. u + v = v + u
3. (u + v) + w = u + (v + w).
4. There is a zero vector 0 in 𝑉 such that u + 0 = u.
5. For each u in 𝑉 , there is a vector −u in 𝑉 such that u +

(−u) = 0.
6. The scalar multiple of u by 𝑐, denoted by 𝑐u, is in 𝑉 .
7. 𝑐(u + v) = 𝑐u + 𝑐v
8. (𝑐 + 𝑑)u = 𝑐u + 𝑑u.
9. 𝑐(𝑑u) = (𝑐𝑑)u
10. 1u = u.

Contents

Subspace . . . . . . 49
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Basis . . . . . . . 56

Five Examples of Vector Spaces

▶ The space ℝ𝑛 =

⎧{{
⎨{{⎩

⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣

𝑥𝑖 ∈ ℝ

⎫}}
⎬}}⎭

is a vector space with op-

erations

⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑥1 + 𝑦1
𝑥2 + 𝑦2

⋮
𝑥𝑛 + 𝑦𝑛

⎤
⎥
⎥
⎥
⎦

and 𝑐
⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑐𝑥1
𝑐𝑥2

⋮
𝑐𝑥𝑛

⎤
⎥
⎥
⎥
⎦

.

▶ Let P𝑛(𝑥) = {𝑎0+𝑎1𝑥+…+𝑎𝑛𝑥𝑛|𝑎𝑖 ∈ ℝ}with two operationsZero vectors

1. The zero vector of ℝ𝑛 is
⎡
⎢
⎢
⎢
⎣

0
0
⋮
0

⎤
⎥
⎥
⎥
⎦

.

2. The zero vector of P𝑛(𝑥) is 0 = 0+
0𝑥 + 0𝑥2 + … + 0𝑥𝑛.

3. The zero vector of 𝑀𝑚𝑛(ℝ) is

⎡⎢⎢
⎣

0 … 0
⋮ ⋱ ⋮
0 … 0

⎤⎥⎥
⎦

4. The zero vector of 𝐶(−∞, ∞) is
0, the zero function.

(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛) + (𝑏0 + 𝑏1𝑥 + … + 𝑏𝑛𝑥𝑛)
=(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + … + (𝑎𝑛 + 𝑏𝑛)𝑥𝑛.

𝑘(𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛) = (𝑘𝑎0) + (𝑘𝑎1)𝑥 + … + (𝑘𝑎𝑛)𝑥𝑛

▶ Let 𝑀𝑚𝑛(ℝ) =
⎧{
⎨{⎩

⎡⎢⎢
⎣

𝑎11 … 𝑎1𝑛
⋮ ⋮

𝑎𝑚1 … 𝑎𝑚𝑛

⎤⎥⎥
⎦

∣
∣
∣
∣
𝑎𝑖𝑗 ∈ ℝ

⎫}
⎬}⎭
is a vector

space with the usual matrix addition and scalar multiplication.
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▶ Let 𝐶(−∞, ∞) be the set of all real-valued continuous func-
tions defined on the entire real line. 𝐶(−∞, ∞) is a vector
space with operations

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) and (𝑐𝑓)(𝑥) = 𝑐[𝑓(𝑥)]

▶ Define𝐶[𝑎, 𝑏] be the set of all real-valued continuous functions
defined on the interval [𝑎, 𝑏]. 𝐶[𝑎, 𝑏] is a vector space in the
above sense.

Theorem 4.2.1 Let v be any element of a vector space 𝑉 , and let 𝑐
be any scalar. Then the properties below are true.

1. 0v = 0
2. 𝑐0 = 0
3. If 𝑐v = 0, then 𝑐 = 0 or v = 0.
4. (−1)v = −v.

Corollary 4.2.2 Let 𝑉 be a vector space. Then the zero element of
𝑉 is unique.

Sets that are not Vector Spaces

1. The set of all integers (with the standard operations) does not
form a vector space.

2. The set of all second-degree polynomials is not a vector space.
3. 𝑃 = {1 + 𝑎1𝑥 + … 𝑎𝑛𝑥𝑛|𝑎𝑖 ∈ ℝ} is not a vector space.

Example 4.2.1 Let 𝑉 = ℝ2, the set of all ordered pairs of real num-
bers, with the standard operation of addition and the nonstandard
definition of scalar multiplication listed below.

𝑐 (𝑥1, 𝑥2) = (𝑐𝑥1, 0)

Show that 𝑉 is not a vector space.

Subspace

Definition 4.2.2 A nonempty subset 𝑊 of a vector space 𝑉 is a
subspace of 𝑉 when 𝑊 is a vector space under the operations of
addition and scalar multiplication defined in 𝑉 .

Observation: If 𝑊 is a subset of a vector
space 𝑉 , the axioms 2, 3, 7, 8, 9, and 10 are
satisfied automatically.

2. u + v = v + u
3. (u + v) + w = u + (v + w).
7. 𝑐(u + v) = 𝑐u + 𝑐v
8. (𝑐 + 𝑑)u = 𝑐u + 𝑑u.
9. 𝑐(𝑑u) = (𝑐𝑑)u
10. 1u = u.
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In many applications in linear algebra, vector spaces occur as sub-
spaces of larger spaces.

1. The sum of u and v, denoted by u + v, is in 𝑉 .

4. There is a zero vector 0 in 𝑉 such that u + 0 = u.

5. For each u in 𝑉 , there is a vector−u in 𝑉 such that u+(−u) = 0.

6. The scalar multiple of u by 𝑐, denoted by 𝑐u, is in 𝑉 .

Theorem 4.2.3 (Test for a Subspace) If 𝑊 is a nonempty subset of
a vector space 𝑉 , then 𝑊 is a subspace of 𝑉 if and only if the two
closure conditions listed below hold.

1. If u and v are in 𝑊 , then u + v is in 𝑊 .
2. If u is in 𝑊 and 𝑐 is any scalar, then 𝑐u is in 𝑊 .

Trivial subspace

There are two obvious subspace of a vector space 𝑉 .

1. {0} 2. 𝑉 .

We call them trivial.

Example 4.2.2 Let𝑊 be the set of all 2×2matrices such that𝐴𝑇 =
𝐴. Show that 𝑊 is a subspace of the vector space 𝑀2,2, with the
standard operations of matrix addition and scalar multiplication.

Example 4.2.3 Show that 𝑊 = {(𝑥1, 𝑥2) ∶ 𝑥1 ≥ 0 and 𝑥2 ≥ 0},
with the standard operations, is not a subspace of ℝ2.

Theorem 4.2.4 If 𝑉 and 𝑊 are both subspaces of a vector space 𝑈 ,
then the intersection of 𝑉 and 𝑊 (denoted by 𝑉 ∩ 𝑊) is also a
subspace of 𝑈 .

Example 4.2.4 Let 𝑊5 be the vector space of all functions defined
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on [0, 1], and let 𝑊1, 𝑊2, 𝑊3, and 𝑊4 be defined as shown below.

𝑊1 = set of all polynomial functions defined on[0, 1]
𝑊2 = set of all functions that are differentiable on [0, 1]
𝑊3 = set of all functions that are continuous on [0, 1]
𝑊4 = set of all functions that are integrable on [0, 1]

Show that 𝑊1 ⊂ 𝑊2 ⊂ 𝑊3 ⊂ 𝑊4 and that 𝑊𝑖 is a subspace of 𝑊𝑗
for 𝑖 ≤ 𝑗.

Subspace of ℝ2

Example 4.2.5 Determine whether each subset is a subspace of ℝ2.

1. The set of points on the line 𝑥 + 2𝑦 = 0
2. The set of points on the line 𝑥 + 2𝑦 = 1

Remark: A subset𝑊 is a subspace of ℝ𝑛 is
a subspace only if 0 is in 𝑊 which is a very
effective observation.

subspaces of ℝ2

If𝑊 is a subset of ℝ2, then it is a subspace if and only if it has one
of the forms listed below.

1. 𝑊 consists of the single point (0, 0).
2. 𝑊 consists of all points on a line that passes through the
origin.

3. 𝑊 consists of all of ℝ2.

Subspace of ℝ3

subspace of ℝ3

A subset 𝑊 of ℝ3 is a subspace of ℝ3 if and only if it has one of
the forms listed below.

1. 𝑊 consists of the single point (0, 0, 0).
2. 𝑊 consists of points on a line that passes through the ori-
gin.

3. 𝑊 consists of points in a plane that passes through the ori-
gin.

4. 𝑊 consists of all of ℝ3.

Linear combination
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Definition 4.2.3 A vector v in a vector space 𝑉 is a linear combina-
tion of the vectors u1, u2, … , u𝑘 in 𝑉 when v can be written in the
form

v = 𝑐1u1 + 𝑐2u2 + ⋯ + 𝑐𝑘u𝑘

where 𝑐1, 𝑐2, … , 𝑐𝑘 are scalars, and are called weights.

1. (1, 3, 1) = 3(0, 1, 2) + (1, 0, −5).

2. [ 0 8
2 1

] = [ 0 2
1 0

] + 2 [ −1 3
1 2

] − [ −2 0
1 3

].

Example 4.2.6

1. Write the vector w = (1, 1, 1) as a linear combination of
vectors in the set

𝑆 = {(1, 2, 3), (0, 1, 2), (−1, 0, 1)}.

2. If possible, write the vector w = (1, −2, 2) as a linear com-
bination of vectors in the set 𝑆 above.

Example 4.2.7

1. Write the vector w = 1 + 𝑥 + 𝑥2 as a linear combination of
vectors in the set

𝑆 = {1 + 2𝑥 + 3𝑥2, 𝑥 + 2𝑥2, −1 + 𝑥2}.

2. If possible, write the vector w = 1 − 2𝑥 + 2𝑥2 as a linear
combination of vectors in the set 𝑆 above.

Exercise 4.2.1 Write w = [ 1 1
1 0

] as a linear combination of

vectors v1 = [ 1 2
3 0

]. v2 = [ 0 1
2 0

] and v3 = [ −1 0
1 0

].

Spanning sets

Definition 4.2.4 (Spanning Set) Let 𝑆 = {v1, v2, … , v𝑘} be a subset
of a vector space 𝑉 . The set 𝑆 is a spanning set of 𝑉 when every
vector in 𝑉 can be written as a linear combination of vectors in 𝑆.
In such cases it is said that 𝑆 spans 𝑉 .
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Example 4.2.8

▶ The set 𝑆 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans ℝ3 because
any vector u = (𝑢1, 𝑢2, 𝑢3) in ℝ3 can be written as

u = 𝑢1(1, 0, 0) + 𝑢2(0, 1, 0) + 𝑢3(0, 0, 1) = (𝑢1, 𝑢2, 𝑢3) .

▶ The set 𝑆 = {1, 𝑥, 𝑥2} spans 𝑃2 because any polynomial
function 𝑝(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 in 𝑃2 can be written as

𝑝(𝑥) = 𝑎(1) + 𝑏(𝑥) + 𝑐 (𝑥2) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2

Example 4.2.9 Show that 𝑆 = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)} spans
ℝ3.

Exercise 4.2.2

▶ Show that 𝑆 = {1 + 2𝑥 + 3𝑥2, 𝑥 + 𝑥2, −2 + 𝑥2} spans 𝑃2(𝑥).
▶ 𝑆 = {(1, 2, 3), (0, 1, 2), (−1, 0, 1)} does not span ℝ3.

The span of a set

Definition 4.2.5 If 𝑆 = {v1, v2, … , v𝑘} is a set of vectors in a vector
space 𝑉 , then the span of 𝑆 is the set of all linear combinations of
the vectors in 𝑆,

span(𝑆) = {𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑘v𝑘|𝑐1, 𝑐2, … , 𝑐𝑘 ∈ ℝ} .

The span of 𝑆 is denoted by

span(𝑆) or span {v1, v2, … , v𝑘} .

When span(𝑆) = 𝑉 , it is said that 𝑉 is spanned by {v1, v2, … , v𝑘},
or that 𝑆 spans 𝑉 .

Example 4.2.10 Determine span(𝑆), where𝑆 = {[ 1
0

] , [ 1
1

]}.

Example 4.2.11 Find the value of 𝑎 for which 𝑣 is in the set 𝐻 ,
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where

𝑣 =
⎡
⎢
⎢
⎢
⎣

2
6

−9
𝑎

⎤
⎥
⎥
⎥
⎦

, 𝐻 = span

⎧{{
⎨{{⎩

⎡
⎢
⎢
⎢
⎣

−2
−4
1

−1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

0
−2
5
4

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

0
0

−3
2

⎤
⎥
⎥
⎥
⎦

⎫}}
⎬}}⎭

.

Theorem 4.2.5 If 𝑆 = {v1, v2, … , v𝑘} is a set of vectors in a vector
space 𝑉 , then span(𝑆) is a subspace of 𝑉 . Moreover, span(𝑆) is
the smallest subspace of 𝑉 that contains 𝑆, in the sense that every
other subspace of 𝑉 that contains 𝑆 must contain span(𝑆).

This is an important theorem of this chap-
ter.

Linear independence

Definition 4.2.6 A set of vectors 𝑆 = {v1, v2, … , v𝑘} in a vector
space 𝑉 is linearly independent when the vector equation

𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑘v𝑘 = 0

has only the trivial solution

𝑐1 = 0, 𝑐2 = 0, … , 𝑐𝑘 = 0.

If there are also nontrivial solutions, then 𝑆 is linearly dependent.

Example 4.2.12 Determine whether the set 𝑆 below of vectors in
ℝ3 is linearly independent or linearly dependent.

𝑆 = {v1, v2, v3} = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)}.

Example 4.2.13 Determine whether the set 𝑆 below of vectors in
𝑃2 is linearly independent or linearly dependent.

𝑆 = {1 + 𝑥 − 2𝑥2, 2 + 5𝑥 − 𝑥2, 𝑥 + 𝑥2}

Example 4.2.14 Determine whether the set of vectors in 𝑀2,2 is
linearly independent or linearly dependent.

𝑆 = {[ 2 1
0 1

] , [ 3 0
2 1

] , [ 1 0
2 0

]}
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Example 4.2.15 Determine whether the set of vectors in ℝ4 is lin-
early independent or linearly dependent.

𝑆 = {v1, v2, v3, v4} =

⎧{{
⎨{{⎩

⎡
⎢
⎢
⎢
⎣

1
0

−1
0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1
1
0
2

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

0
3
1

−2

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

0
1

−1
2

⎤
⎥
⎥
⎥
⎦

⎫}}
⎬}}⎭

Exercise 4.2.3 (a). Determine whether the set of vectors in ℝ4 is
linearly dependent.

𝑆 =

⎧{{
⎨{{⎩

⎡
⎢
⎢
⎢
⎣

1
0

−1
0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1
1
0
2

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

0
3
1
2

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

0
1

−1
−2

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1
1
1
1

⎤
⎥
⎥
⎥
⎦

⎫}}
⎬}}⎭

(b). show that span(𝑆) = ℝ4.

Theorem 4.2.6 Suppose that {v1, v2, ⋯ , v𝑘} is linear independent,
but {v1, v2, … , v𝑘, v𝑘+1} is linear dependent. Then v𝑘+1 must be
able to written as linear combination of {v1, v2, ⋯ , v𝑘}.

Proof. Suppose that

𝑥1v1 + 𝑥2v2 + ⋯ + 𝑥𝑘v𝑘 + 𝑥𝑘+1v𝑘+1 = 0 (∗)

Since {v1, v2, … , v𝑘, v𝑘+1} is linear dependent, there exists a nontriv-
ial solution (𝑎1, 𝑎2, … , 𝑎𝑘+1) ≠ 0 to the vector equation (∗).

We claim that 𝑎𝑘+1 ≠ 0. Suppose on the contrary that 𝑎𝑘+1 = 0. Then
𝑎1𝑣1 +𝑎2𝑣2 +⋯+𝑎𝑘𝑣𝑘 = 0. Since {𝑣1, ⋯ , 𝑣𝑘} is linearly independent,
we know 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑘 = 0, which contradicts to the assumption
that (𝑎1, 𝑎2, … , 𝑎𝑘+1) ≠ 0. Thus 𝑎𝑘+1 ≠ 0. It follows from the vector
equation (*) that 𝑎𝑘+1v𝑘+1 = −𝑎1𝑣1 −𝑎2𝑣2 −⋯−𝑎𝑘𝑣𝑘, which implies
that

v𝑘+1 = − 𝑎1
𝑎𝑘+1

𝑣1 − 𝑎2
𝑎𝑘+1

𝑣2 − ⋯ − 𝑎𝑘
𝑎𝑘+1

𝑣𝑘

Corollary 4.2.7 Two vectors u and v in a vector space 𝑉 are linearly
dependent if and only if one is a scalar multiple of the other.

Geometric view of Linear independent

1. 𝐵 = {𝑣1} is linear independent
iff 𝑣1 ≠ 0.

2. 𝐵 = {𝑣1, 𝑣2} is linear dependent
iff they are co-line(On a same
line).

3. 𝐵 = {𝑣1, 𝑣2, 𝑣3} is linear depen-
dent iff they are co-plane(On a
same plane ).
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Basis

basis

A set of vectors 𝑆 = {v1, v2, … , v𝑛} in a vector space 𝑉 is a basis
for 𝑉 when the conditions below are true.

1. 𝑆 spans 𝑉 . 2. 𝑆 is linearly independent.

If a vector space V has a basis with a finite number of vectors, then
V is finite dimensional. Otherwise, V is infinite dimensional.

Standard Basis

1. The set

⎧{{
⎨{{⎩

e1 =
⎡
⎢
⎢
⎢
⎣

1
0
⋮
0

⎤
⎥
⎥
⎥
⎦

, e2 =
⎡
⎢
⎢
⎢
⎣

0
1
⋮
0

⎤
⎥
⎥
⎥
⎦

, … , e𝑛 =
⎡
⎢
⎢
⎢
⎣

0
0
⋮
1

⎤
⎥
⎥
⎥
⎦

⎫}}
⎬}}⎭

is the

standard basis of ℝ𝑛, i.e., ℝ𝑛 = span{e1, e2, … , e𝑛}.

2. The set {1, 𝑥, … , 𝑥𝑛} is the standard basis of P𝑛(𝑥).

3. Let 𝐸𝑖𝑗 ∈ 𝑀𝑚𝑛(ℝ) be the matrix such that (𝑖, 𝑗)-entry is 1 and
all the other entries are zero. The set

{𝐸11, … , 𝐸1𝑛, 𝐸21, … , 𝐸2𝑛, … , 𝐸𝑚1, … , 𝐸𝑚𝑛}

is the standard basis of 𝑀𝑚𝑛(ℝ).

Example 4.2.16 Show that
⎧{
⎨{⎩

⎡⎢⎢
⎣

1
1
1

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

3
0

−1

⎤⎥⎥
⎦

,
⎡⎢⎢
⎣

0
6
1

⎤⎥⎥
⎦

⎫}
⎬}⎭
is a basis

of ℝ3.

Example 4.2.17 Show that {1 + 𝑥 + 𝑥2, 3 − 𝑥2, 6𝑥 + 𝑥2} is a basis
of P2(𝑥).

Example 4.2.18 Let u = {𝑢1, 𝑢2, 𝑢3} be any vector in ℝ3. Show that
the equation u = 𝑐1v1 + 𝑐2v2 + 𝑐3v3 has a unique solution for the
basis 𝑆 = {v1, v2, v3} = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)}.



4.2 Abstract Vector Space 57

Theorem 4.2.8 (Uniqueness of Basis Representation)
If 𝑆 = {v1, v2, … , v𝑛} is a basis for a vector space 𝑉 , then every
vector in 𝑉 can be written in one and only one way as a linear
combination of vectors in 𝑆.

The theorem will lead to an important con-
cepts in linear algebra.

Theorem 4.2.9 (Bases and Linear Dependence)
If 𝑆 = {v1, v2, … , v𝑛} is a basis for a vector space 𝑉 , then every set
containing more than 𝑛 vectors in 𝑉 is linearly dependent. That is,
for any 𝑚 > 𝑛, 𝑊 = {𝑢1, 𝑢2, … , 𝑢𝑚} is linear dependent.

Proof. Suppose that

𝑥1𝑢1 + 𝑥2𝑢2 + … + 𝑥𝑚𝑢𝑚 = 0. (4.1)

We are going to show that the vector equation (4.1) has a nontrivial
solution. Since 𝑆 is a basis of 𝑉 and 𝑊 ⊆ 𝑉 , we have

𝑢1 = 𝑎11𝑣1 + 𝑎21𝑣2 + … + 𝑎𝑛1𝑣𝑛,
𝑢2 = 𝑎12𝑣1 + 𝑎22𝑣2 + … + 𝑎𝑛2𝑣𝑛,

⋮
𝑢𝑚 = 𝑎1𝑚𝑣1 + 𝑎2𝑚𝑣2 + … + 𝑎𝑛𝑚𝑣𝑛.

Then sub them into the vector equation (4.1), and we have

𝑥1(𝑎11𝑣1 + 𝑎21𝑣2 + … + 𝑎𝑛1𝑣𝑛)
+𝑥2(𝑎12𝑣1 + 𝑎22𝑣2 + … + 𝑎𝑛2𝑣𝑛)
+ …
+𝑥𝑚(𝑎1𝑚𝑣1 + 𝑎2𝑚𝑣2 + … + 𝑎𝑛𝑚𝑣𝑛) = 0,

which implies that

(𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑚𝑥𝑚)𝑣1

+(𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑚𝑥𝑚)𝑣2

+ …
+(𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + … + 𝑎𝑛𝑚𝑥𝑚)𝑣𝑛 = 0.

Since 𝑆 is a basis, 𝑆 is linear independent, thus we have

𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑚𝑥𝑚 = 0
𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑚𝑥𝑚 = 0

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + … + 𝑎𝑛𝑚𝑥𝑚 = 0

(4.2)
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This homogeneous linear system (4.2) has nontrivial solution, which
implies that the vector equation (4.1) has nontrivial solution.

Theorem 4.2.10 (Number of Vectors in a Basis) If a vector space 𝑉
has one basis with 𝑛 vectors, then every basis for 𝑉 has 𝑛 vectors.

Definition 4.2.7 (Dimension of a Vector Space) If a vector space
𝑉 has a basis consisting of 𝑛 vectors, then the number 𝑛 is the
dimension of 𝑉 , denoted by dim(𝑉 ) = 𝑛. When 𝑉 consists of the
zero vector alone, the dimension of 𝑉 is defined as zero.

1. The dimension of ℝ𝑛 with the standard operations is 𝑛.
2. The dimension of 𝑃𝑛 with the standard operations is 𝑛 + 1.
3. The dimension of 𝑀𝑚,𝑛 with the standard operations is 𝑚𝑛.

Example 4.2.19 Find the dimension of each subspace of ℝ3.

1. 𝑊 = {(𝑑, 𝑐 − 𝑑, 𝑐) ∶ 𝑐 and 𝑑 are real numbers }
2. 𝑊 = {(2𝑏, 𝑏, 0) ∶ 𝑏 is a real number }.

Exercise 4.2.4 Find the dimension of the subspace𝑊 ofℝ4 spanned
by

𝑆 = {v1, v2, v3} = {(−1, 2, 5, 0), (3, 0, 1, −2), (−5, 4, 9, 2)}.

Example 4.2.20 Let 𝑊 be the subspace of all symmetric matrices
in 𝑀2,2. What is the dimension of 𝑊 ?

Theorem 4.2.11 (Basis Tests in an 𝑛-Dimensional Space) Let 𝑉 be
a vector space of dimension 𝑛.

1. If 𝑆 = {v1, v2, … , v𝑛} is a linearly independent set of vectors
in 𝑉 , then 𝑆 is a basis for 𝑉 .

2. If 𝑆 = {v1, v2, … , v𝑛} spans 𝑉 , then 𝑆 is a basis for 𝑉 .

Proof. 1. To show 𝑆 is a basis of 𝑉 , we only need to show that
𝑆 spans 𝑉 . ∀𝑣 ∈ 𝑉 and let 𝑆′ = {𝑣1, 𝑣2, … , 𝑣𝑛, 𝑣}. It follows
from Theorem ?? that 𝑆′ is linear dependent. Suppose that

𝑥1𝑣1 + 𝑥2𝑣2 + … + 𝑥𝑛𝑣𝑛 + 𝑥𝑛+1𝑣𝑛+1 = 0. (4.3)
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We claim that 𝑥𝑛+1 ≠ 0. Suppose on the contrary that 𝑥𝑛+1 =
0. The vector equation above becomes

𝑥1𝑣1 + 𝑥2𝑣2 + … + 𝑥𝑛𝑣𝑛 = 0.

Since {𝑣1, 𝑣2, … , 𝑣𝑛} is linear independent, we have

𝑥1 = 𝑥2 = … = 𝑥𝑛 = 0.

Thus the vector equation 4.3 has only trivial solution. Thus 𝑆′

is linear independent, which contradicting to the established
fact that 𝑆′ is linear dependent. So 𝑥𝑛+1 ≠ 0. Then

𝑣 = − 𝑥1
𝑥𝑛+1

𝑣1 − 𝑥2
𝑥𝑛+1

𝑣2 − … − 𝑥𝑛
𝑥𝑛+1

𝑣𝑛

That is, 𝑆 spans 𝑉 . Therefore 𝑆 is a basis of 𝑉 .
2. Let 𝑆′ be obtained in the following way.

Project

Let 𝐵 = {v1, v2, … , v𝑛}. A subset 𝐵′ is called a maximal linear inde-
pendent set in the sense that ∀𝑢 ∈ 𝐵\𝐵′, 𝐵″ = 𝐵′ ⋃{𝑢} is a linear
dependent set. Write an algorithm to find a maximal linear indepen-
dent subset 𝐵′ of 𝐵.

4.3 Row and Column spaces of a matrix 𝐴

Example:
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For the matrix 𝐴 = [ 0 1 −1
−2 3 4

], the row vectors are (0, 1, −1)

and (−2, 3, 4), and the column vectors are[ 0
−2

] , [ 1
3

], and[ −1
4

].

Definition 4.3.1 (Row Space and Column Space of a Matrix)
Let 𝐴 be an 𝑚 × 𝑛 matrix.

1. The row space of𝐴 is the subspace of ℝ𝑛 spanned by the row
vectors of 𝐴.

2. The column space of𝐴 is the subspace of ℝ𝑚 spanned by the
column vectors of 𝐴.

Example: Let 𝐴 = [ 0 1 −1
−2 3 4

].

▶ The row space is the set span{(0, 1, −1), (−2, 3, 4)}.

▶ The column space is the set span{[ 0
−2

] , [ 1
3

] , [ −1
4

]}.

Recall that span(S) is a subspace. The row or column space is a sub-
space of ℝ𝑛, thus it is important to find a basis for the subspaces.

Theorem 4.3.1 (Basis for the Row Space of a Matrix)
If a matrix 𝐴 is row-equivalent to a matrix 𝐵 in row-echelon form,
then the nonzero row vectors of 𝐵 form a basis for the row space
of 𝐴.

Theorem 4.3.2 (Basis for the Column Space of a Matrix)
the pivot columns of a matrix 𝐴 form a basis for the column space
of 𝐴.

Example: Find a basis for the row space and column space of the
matrix 𝐴 below, respectively.

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 3 1 3
0 1 1 0

−3 0 6 −1
3 4 −2 1
2 0 −4 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, RREF(𝐴) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 −2 0
0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Theorem 4.3.3 The row space and column space of an𝑚×𝑛matrix
𝐴 have the same dimension.
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Definition 4.3.2 (Rank of a Matrix)
The dimension of the row (or column) space of a matrix 𝐴 is the
rank of 𝐴 and is denoted by rank(𝐴).

Null space

Definition: Nullspace and nullity

If𝐴 is an𝑚×𝑛matrix, then the set of all solutions of the homoge-
neous system of linear equations𝐴x = 0 is a subspace of ℝ𝑛 called
the nullspace of 𝐴 and is denoted by 𝑁(𝐴). So,

𝑁(𝐴) = {x ∈ ℝ𝑛 ∶ 𝐴x = 0} .

The dimension of the nullspace of 𝐴 is the nullity of 𝐴.

Example: Find the nullspace of the matrix.

𝐴 =
⎡⎢⎢
⎣

1 2 −2 1
3 6 −5 4
1 2 0 3

⎤⎥⎥
⎦

, RREF(𝐴) =
⎡⎢⎢
⎣

1 2 0 3
0 0 1 1
0 0 0 0

⎤⎥⎥
⎦

Theorem 4.3.4 Let 𝐴 be an 𝑚 × 𝑛 matrix. Then

𝑛 = rank(𝐴) + nullity(𝐴)

Theorem 4.3.5 (Solutions of a onhomogeneous linear system)
If x𝑝 is a particular solution of the nonhomogeneous system𝐴x = b,
then every solution of this system can be written in the form

x = x𝑝 + xℎ,

where xℎ is a solution of the corresponding homogeneous system
𝐴x = 0.

Prove that

▶ The set of all solution vectors
of the nonhomogeneous system
𝐴x = b, where b ≠ 0, is not a
subspace

▶ Suppose that both x𝑝 and y𝑝
are two particular solution of the
nonhomogeneous system 𝐴x = b,
then x𝑝 − y𝑝 is a solution of the
homogeneous system 𝐴x = 0.

▶ Show that y𝑝 = x𝑝 +xℎ, where xℎ
is a solution of the corresponding
homogeneous system 𝐴x = 0.

4.4 From Abstract to concrete

Coordinate vector
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Definition 4.4.1 (coordinate vector)
Let 𝐵 = {v1, v2, … , v𝑛} be an ordered basis for a vector space 𝑉
and let x be a vector in 𝑉 such that

x = 𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑛v𝑛.

The scalars 𝑐1, 𝑐2, … , 𝑐𝑛 are the coordinates of x relative to the basis
𝐵. The coordinate vector of x relative to 𝐵 is the column vector in
ℝ𝑛 whose components are the coordinates of x, denoted by

[x]𝐵 =
⎡
⎢
⎢
⎢
⎣

𝑐1
𝑐2
⋮

𝑐𝑛

⎤
⎥
⎥
⎥
⎦

[x]𝐵 =
⎡
⎢
⎢
⎢
⎣

𝑐1
𝑐2
⋮

𝑐𝑛

⎤
⎥
⎥
⎥
⎦

⟺ x = 𝑐1v1 + … + 𝑐𝑛v𝑛

Example 4.4.1 Find the coordinate vector of x = (1, 2, −1) in ℝ3

relative to the standard basis 𝐵 and a (nonstandard) basis 𝐵′ =
{(1, 0, 1), (0, −1, 2), (2, 3, −5)}, respectively.

Example 4.4.2
Let 𝐵 = {(9, −3, 15, 4), (3, 0, 0, 1), (0, −5, 6, 8), (3, −4, 2, −3)} be
a basis of ℝ4, x = (0, −20, 7, 15) and y = (15, −19, 23, −10). Find
[x]𝐵, [y]𝐵 and [x + y]𝐵.

Hint: You may use the following fact.

RREF
⎛⎜⎜⎜⎜⎜⎜
⎝

⎡
⎢
⎢
⎢
⎣

9 3 0 3 15 0
−3 0 −5 −4 −19 −20
15 0 6 2 23 7

4 1 8 −3 −10 15

⎤
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎡
⎢
⎢
⎢
⎣

1 0 0 0 1 −1
0 1 0 0 −2 1
0 0 1 0 0 3
0 0 0 1 4 2

⎤
⎥
⎥
⎥
⎦

Theorem 4.4.1 Let 𝐵 be a basis of a vector space 𝑉 , x, y ∈ 𝑉 and
𝑘 ∈ ℝ. Then

1. [x + y]𝐵 = [x]𝐵 + [y]𝐵.
2. [𝑘x]𝐵 = 𝑘([x]𝐵)

Theorem 4.4.2 Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑚} be a subset of 𝑉 and 𝐵 be
a basis of a vector space 𝑉 . Show that
𝑆 is linear independent iff {[𝑣1]𝐵, … , [𝑣𝑚]𝐵} is linear independent.

Example 4.4.3 Let x = −20𝑥 + 7𝑥2 + 15𝑥3, y = 15 − 19𝑥 + 23𝑥2 −
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10𝑥3 and 𝐵 = {9 − 3𝑥 + 15𝑥2 + 4𝑥3, 3 + 𝑥3, −5𝑥 + 6𝑥2 + 8𝑥3, 3 −
4𝑥 + 2𝑥2 − 3𝑥3}.

1. Show that 𝐵 is a basis of 𝑃3(𝑥).
2. Compute [x]𝐵 and [y]𝐵.

Example 4.4.4 Let x = [ 0 −20
7 15

], y = [ 15 −19
23 −10

] and 𝐵 =

{[ 9 −3
15 4

] , [ 3 0
0 1

] , [ 0 −5
6 8

] , [ 3 −4
2 −3

]}.

1. Show that 𝐵 is a basis of 𝑀22(ℝ).
2. Compute [x]𝐵 and [y]𝐵.

It follows from the previous three examples, we know that vector can
disguise in different ways. However, One can understand any abstract
vector with respect to a basis in the sense of ℝ𝑛.

Transition Matrix

Lemma 4.4.3 Let 𝐵 = {v1, v2, … , v𝑛} and 𝐵′ = {u1, u2, … , u𝑛} be
two bases for a vector space 𝑉 . If

v1 = 𝑐11u1 + 𝑐21u2 + ⋯ + 𝑐𝑛1u𝑛

v2 = 𝑐12u1 + 𝑐22u2 + ⋯ + 𝑐𝑛2u𝑛

⋮
v𝑛 = 𝑐1𝑛u1 + 𝑐2𝑛u2 + ⋯ + 𝑐𝑛𝑛u𝑛

then the transition matrix from 𝐵 to 𝐵′ is defined as

𝑄 =
⎡
⎢
⎢
⎢
⎣

𝑐11 𝑐12 … 𝑐1𝑛
𝑐21 𝑐22 … 𝑐2𝑛
⋮ ⋮ ⋮

𝑐𝑛1 𝑐𝑛2 … 𝑐𝑛𝑛

⎤
⎥
⎥
⎥
⎦

= [[v1]𝐵′ [v2]𝐵′ … [v𝑛]𝐵′ ]

How to find the the transition matrix from 𝐵 to 𝐵′?

1. How to find [v1]𝐵′?

2. How to find [v1]𝐵′ , [v2]𝐵′ , ⋯, [v𝑛]𝐵′ together?

3. Let 𝑆 = [u1 u2 … u𝑛] and 𝑇 = [v1 v2 … v𝑛]. Ex-
press 𝑄 by 𝑆 and 𝑇 .
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Exercise: Find the the transition matrix from 𝐵′ to 𝐵?

Example 4.4.5 Find the transitionmatrix from𝐵 to𝐵′ for the bases
for ℝ2 below.

𝐵 = {(−3, 2), (4, −2)} and 𝐵′ = {(−1, 2), (2, −2)}

Theorem 4.4.4 (Change of basis)
Let 𝐵 = {v1, v2, … , v𝑛} and 𝐵′ = {u1, u2, … , u𝑛} be two bases for
a vector space 𝑉 , and 𝑄 is the transition matrix from 𝐵 to 𝐵′. For
any vector x ∈ 𝑉 ,

[x]𝐵′ = 𝑄[x]𝐵
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