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Part 1: First Semester






System of Linear Equations

Variable! is an expression, usually denoted by a letter, that is defined
for values within a given set. Variable can be used to represent ele-
ments of sets which are not numbers but frequently it relates to nu-
merical quantities and functions defined in them together with the

relationship between them.

Solving system of linear equation is an important topic in linear alge-
bra. It serves as a tool of this course. In most case we use Gauss-Jordan
elimination to solve system of linear equations. The general solutions

give the idea of vector.

1.1 System of linear equations

The following definitions are important.

p Linear equation.
A linear equation in the variables 2, z,, ..., z,, is an equation

that can be written in the form
41T + a9 + ... +a,z, =b

where the constant b and the coefficients, a,, a,, ..., a,, are real

numberts.

p System of linear equations. A system of linear equations is a

collection of one or more linear equations involving the same

variables, x, zo, ..., x,,.
1124 + A19Ty + -+ A1, T, = bl
a21331 + a22$2 + + a2n$n - b2
T R N e i bm

p» Solution set.
A solution of the system is a list (s, $,,...,s,) of numbers
that makes each equation a true statement when the values

81, ..., 8,, are substituted for x4, ..., z,,, respectively. The set of

1.1 System of linear equations
1.2 Gauss-Jordan Elimination
1.3 Solutionset . .........
1.4 Applications . . . .. ... ..
1.5SageMath . ..........

1o o e AR

g R — B

Figure 1.1: a linear equation x + y = 3.

9

Figure 1.2: System of linear equations
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Hint: Think lines in the plane or planes in

space!

all possible solutions is called the solution set of the linear sys-
tem.

p Consistent and inconsistent.
A system of linear equations is said to be consistent if it has
either one solution or infinitely many solutions; a system is in-

consistent if it has no solution.

Discussion: (1) Give two examples of linear systems which are consis-
tent and inconsistent, respectively. For the consistent system, find the

solution set.

(2) Give an example of a linear system which has infinitely many so-

lutions.

Motivations

Example 1.1.1 Which linear system is easy to solve?

T+ y=25 T+ y=25
2 =30 22 + 4y = 80

The linear system on the left is called in row-echelon form, which
means that it has a “stair-step”pattern with nonzero leading coeffi-
cients. For the first linear system, using back-substitution, we easily

obtain the solution y = 15 and then x = 10.

Definition 1.1.1 Two linear system are called equivalent when they

have the same solution set.

It is a common sense that one can transform a linear system into an

equivalent linear system using the following three operations.

Operations which produce equaivalent linear systems

Each of these operations on a system of linear equations produces

an equivalent system.

1. Add a multiple of an equation to another equation.
2. Multiply an equation by a nonzero constant.

3. Interchange two equations.
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In what next, we show the second linear system in Example 1.1.1 is

equivalent to the first one.

r+y=25 (1) (a1
2z +4y =80 (2).

Equation (2) subtract 2 times of Equation (1) to obtain Equation (3),

that is,

r+y=25 (1) 1.2)
2y =30 (3). '

In this course, we go further more. % times of Equation (3) yields

that

r+y=25 (1) 1.3
y=15 (4). '

Then it follows from Equation (1) substracting Equation (4) that

{x_10 (5) 1.4
y=15 (4).

There is a great mathematical idea behind this example, that is, to
solve a linear system, one find an equivalent linear system which is
much easier to solve. The algorithm to transform a system of lin-
ear equations into a unique equivalence system is called the Gauss-

Jordan elimination?.
Example 1.1.2 Using the ideas above, find the solution set of the
linear system

3Ty — 673 + 61, +4x5 = —5
3%1_7.%24‘ 8£E3—5£B4+8£U5:9
3v, — 92y + 1225 — 92,4 + 625 = 15

1.2 Gauss-Jordan Elimination

In what next, we introduce a notion to simplify the expression of

Example 1.1.2. The essential information of a linear system can be

Discussion: the idea.

This is the most important idea in this chap-

ter.

2 Tk

Try this Exercise.



http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q1.html
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3: Matrix is a way to record information!

Try this Exercise.

Critical Thinking:

Linear system <= Matrix.

4 HUEEYE: R SRR ST
W TCAE SR = R T R N AR o —
Discussion: terminologies:

1. row

2. column

3. entry

5: Do you understand this paragraph? Cir-
cle your answer below:

Yes. No.

recorded compactly in a rectangular array called a matrix.> Given

the system

3zy — 625+ 62,y + 425 = —5
3z, — Txg + 8x3— 52, +8x5 =9
31'1 - 91:2 ‘I‘ ].23?3 - 9x4 + 6:1:5 — 15

The matrices

0 3 -6 6 4 0 3 -6 6 4 =5
3 -7 8 -5 8 |land| 3 -7 8 -5 8 9
3 -9 12 -9 6 3 -9 12 -9 6 15

are called the coefficient matrix and augmented matrix of the linear

system, respectively.

Recall that, for a linear system, there are three operations to produce
an equivalent linear system. * Analogue for the three operations, we

also have three row operations.

Three Operations for matrix

1. Add a multiple of a row to another row.
2. Multiply a row by a nonzero constant.

3. Interchange two rows.

Exercise 1.2.1 Answer the following three questions below.

Exercise A.

Two matrices are called row equivalent if there is a sequence of el-
ementary row operations that transforms one matrix into the other.
Row operations are reversible. Therefore, if the augmented matrices
of two linear systems are row equivalent, then the two systems have

the same solution set.”

A nonzero row or column in a matrix means a row or column that
contains at least one nonzero entry; a leading entry of a row refers to

the leftmost nonzero entry in a nonzero row.


http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q2.html
http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q6.html
http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q7.html
http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q7.html
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Definition 1.2.1 A rectangular matrix is in row echelon form (REF)

if it has the following three properties:

1. All nonzero rows are above any row of all zeros.

2. Each leading entry of a row is in a column to the right of the
leading entry of the row above it.

3. All entries in a column below a leading entty are zero.
If a matrix in row echelon form satisfies the following ad-
ditional conditions, then it is in reduced row echelon form
(RREF)

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

Example of matrices who has REF and RREF, respectively:

-3 2 1 0 0 29
—4 8 01 0 16
0 O 0 01 3

Example of matrices who atre not in REF.

() o) G ()

Answer:
Exercise: Turn the matrices above into RREF. 0 1 Lo Lo
(oo ) o v )
Definition 1.2.2 A pivot position in a matrix 4 is a location in A
that cotresponds to a leading 1 in the reduced echelon form of A.
A pivot column is a column of A that contains a pivot position. Discussion: How to decide the number of

the pivot columns of a matrix A?

Example 1.2.1 Supposed that

aj; Q12 G13 G4 Qpp 10 =3

RREF
Qg1 Qg9p Qg3 Ggg Ggs ? 01 -2 2
Q31 Qzz Q33 0a3q4 0A35 00 0 1

The pivot positions are (1,1)(row, column), (2,2) and (3,5); The

pivot columns are columns 1, 2 and 5.

0 3 -6 6 4 —5
Example 1.2.2 Find the RREFof | 3 —7 8 —5 8 9
3 =9 12 -9 6 15
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Exercise: find the reduced echelon form of

the matrices

1 1 0 0

0 1 3 1
and
-1 0 1 -1
0o 2 =2 2
1 0 0
0o 1 3 1 .
, respectively.
-1 0 1 -1
0o 2 2 2
1 0 0 O
1
Answer: 0 00 R
0O 0 1 o
0O 0 0 1
1 0 O 2
0o 1 0 -2
0 0 1 1
0 0 O 0

Chanllenge question: Write a code to pet-
form the Gauss-Jordan elimination auto-

matically.

True or False:

1. An echelon form of a matrix A is unique.

2. One can get an echelon form of a
matrix A by only replacement and

interchange.

Solution:

Step 1 Begin with the leftmost nonzero column, select a nonzero en-
try in that column as a pivot, and then move the row to the
first row.

Interchange Row 1 and Row 3.

0 3 —6 6 4 -5 3 -9 12 -9 6 15
R1+Rg3

3 =7 8 -5 8 9 e 3 -7 8 -5 8 9

3 -9 12 -9 6 15 0 3 —6 6 4 -5

Step 2 Use the row operations to create zeros in all positions below

the pivot.

Adding —1 times Row 1 to Row 2.
3.9 12 -0 6 15\ ... (3 -9 12 9 6 15
3 7 8 5 8 9 |—| 0 2 4 4 2 6
0 3 -6 6 4 -5 0 3 -6 6 4 -5

Step 3 Cover the row containing the pivot position and cover all rows
above it. Apply steps 1 and 2 to submatrix that remains. Repeat
the process until there are no more nonzero row to modify.

Adding —% time the row 2 to row 3.
3 -9 12 -9 6 15
0 2 —4 4 2 —6
0 3 -6 6 4 -5 00 o0 0 1 4
Step 4 Beginning with the rightmost pivot and working upward and

%'Rz ‘R 3 -9 12 -9 6 15
_ 0 2 —4 4 2 -6

to the left, create zeros above each pivot. If a pivot is not 1,

make it 1 by a scaling operation. Adding -2 times row 3 to row 2,

3 -9 12 -9 6 15 3 -9 12 -9 6 15
—2R3+Ro

0 2 —4 4 2 -6 Em— 0 2 —4 4 0 —14

0 0 0 0 1 4 0 0 0 0 1 4

p —6 times row 3 to Row 1,

3 -9 12 -9 6 15 3 -9 12 -9 0 -9
~6R3+R;

0 2 —4 4 0 -14 E— 0 2 —4 4 0 -14

0 0 0 0 1 4 0 0 0 0 1 4

p Multiply % to Row 2,

3 -9 12 -9 0 -9

iy (3079 12 -9 0 -9
0 2 -4 4 0 -4 [—>] o0 2 2 0 -7
o 0 0o o0 1 4 0o 0 0o 0 1 4
p 9 times Row 2 to Row 1,
3.9 12 9 0 9\ .. (3 0 6 9 0 -72
0o 1 -2 2 0 -7 [— -2 2 0 -7
o0 0o o0 1 4 o0 0o 0 1 4

p Multiply é to Row 1,

3 0 -6 9 0 -T2

1p 1 0 -2 3 0 -24
371
o 1 -2 2 0 -7 e o 1 -2 2 0 -7
0o 0 0 0 1 4 0o 0 0 0 1 4

which is the reduced row echelon form of the original matrix.

Theorem 1.2.1 Each matrix is row equivalent to one and only one

reduced echelon matrix.

p If a matrix A is row equivalent to an echelon matrix U, we call
U an echelon form (or row echelon form) of A;
p if U isin reduced row echelon form, we call U the reduced (row)

echelon form of A.
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The following exercise is also important. You may write the answer

immediately by otained result above.

Exercise 1.2.2 Find the reduce echelon form of ( 10 -2 0 )
Answer: 0 -2 0
0 0 0 1
0 3 —6 4
3 —7 8 8
3 —9 12 6
The next exercise looks similar to the above one. However, it is totally
different.
Exercise 1.2.3 Find the reduce echelon form of 10 10
Answer: 0O 1 -1 0
0 0 0 1
0 —6 6 4
3 8 —5 8
3 12 -9 6
SRR A 4255912211 5 S AT M Ex-
ample 12,253, {625 5712.3{1 45 B AT
LA?
1.3 SOlutiOIl set Try this Exercise.

Recall that an augmented matrix records the essential information
of a linear system. Here is a question: what we can obtain from the

reduced echelon form of the augmented matrix of a linear system?

The reduced echelon form tells many information regarding the linear

system.

Theorem 1.3.1 (Consistent) A linear system is consistent if and only
if the rightmost column of the augmented matrix is not a pivot
column - that is, if and only if an echelon form of the augmented

matrix has no row of the form
( 0O - 0 b ) with b nonzero

Form now on in this section, we suppose that the linear system is

consistent. We define two impottant concepts below.

p» Basic Variables.
The variables corresponding to pivot columns in the augmented

matrix are called basic(leading) variables.


http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q3.html
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Fill the blank:
1. The number of basic variables equals

to the number of , or

2. The number of free variables

equals to

Feel free to add correct answers in

this list.

6: It is a convention({# ).

p Free Variables.
The variables which are not basic variables are called free vari-

ables.

The solution set of a linear system can be described explicitly by solv-
ing the reduced system for the basic variables in terms of the free

variables.

Example 1.3.1 Solve the linear system

3ry — 623 + 62y +4w5 = —H
3y —Txy + 823 — 5z +8x5 = 9
3:1;1 - 9:1;2 + ].2.'173 - 91:4 + 6335 = ].5

Solution. We divides the solution into steps.

Step 1 The augmented coefficient matrix of the system of linear equa-

tions is

0 3 -6 6 4 =5
A= 3 -7 8 -5 8 9
3 -9 12 -9 6 15

Step 2 The row reduced echelon form

-2 3 0 —24
RREFA)=| 0 1 -2 2 0 -7
00 0 01 4

Step 3 How to interpret the RREF(A)?

Ty —2w3+3x, =24
Ty —2x3 + 224 = —7
Ts= 4

Step 4 The variables z,, x, and x are the basic (leading) variables.

The other variables, 25 and xz,, are the free variable.

Step 5 express the basic variables by the free variables ©

I’l = —24 + 2173 - 3%4

T5 =4
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Step 6 The General solution is

x4 is free S| oy | = T3 ;
x, is free Ty Ty

T, —24+2x3 — 3y —24 2 -3

To —7+2z3 —2x4 -7 2 -2

T3 = T3 = 0 |[+z3 1 |tz 0 ,r3, x4 €R

Ty Ty 0 0 1

5 4 4 0 0

Repeat the answer below: how to express

ion?
B ) N the general solution?
Step 7 The statement "z, is free” means that you are free to choose

any value for z:5; The same is for z,. For example, let 25 = 1

and z, = —2, then

—13
—1 Try this Exercise.
1 is a particular solution.
—2
4

The next exercise is a very tough one, but trying it well definitely does

benefit your computational ability.

Exercise 1.3.1 Leta,b,c,d € R. Solve the linear system The rref of the augmented matrix is:

0 0 ja+zb—zc—3d
0 ta—-1b+ic+id
0 1p-1q
1

1 1 1
—za—5c+5d

.'L'l‘i_ 372 =aQa

o O O =
S O = O

0
1

$2+3$3+ x4:b 0
—x + x3— w4=cC

2:E2 - 21/'3 + 2:1:4 = d
The next example is different with the examples above!

Example 1.3.2 Solve the system

Ty — Ty+2m3=14
Ty + x3=26
22, — 3xy + 525 =4
3r; +2x9 — 253=1


http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q5.html
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1 -1 2 4
. . . 1 0 1 6
Answer: The augmented matrix for this system is
2 -3 5 4
3 2 -1 1
1 0 0 0
. . 01 0O . )
and the RREF of this matrix is . Since there is a row
0 010
0 0 0 1
[0 0 0 1]in the reduced echelon form of the augmented matrix,

the system is inconsistent.

Exercise 1.3.2 Find a relation of a, b, ¢,d € R such that the linear

Scan for the solution!

system below is consistent.

T+ Ty =a
3:2—1—3:!:3-1— x4:b

—x + x3— x4,=c

I
=)

205 + 2w — 23,

Discussion: Suppose that the linear system Ax = b is always consis-

tent for any b € R™. What we can say about the reduced echelon form

of a the coefficient matrix?

Theorem 1.3.2 Suppose that A is an n X n matrix and the linear

system Ax = b is always consistent. Then

Homogeneous Linear System

Systems of linear equations in which each of the constant terms is
Homogeneous linear system zero are called homogeneous. A homogeneous system of m equations

in n variables has the form

a1, + @9Tg + ay3T3 + -+ ay,z, =0

a21$1 + CL22(L’2 + a23$3 + + (1277/1'” - O

Gy 1T1 T+ OppyoTo + (pp3T3 + + AnTn = 0

Homogencous linear system is always con- A homogeneous system must have at least one solution. Specifically,
sistent.


http://110.40.223.123:8888/?q=jrnnuk

if all variables in a homogeneous system have the value zero, then

each of the equations is satisfied. Such a solution is called trivial’.

Example 1.3.3 Solve the linear system

3Ty — 623 + 62,4 +4x5 = 0
3, — 729 +8x3 — 5y +8x5 = 0
3%1 _9x2+12$3—9$4+6$5 = 0

The next example is called two birds with one stone. Keep in mind
that some questions can be solved simultaneous, which saves time

and energy.

Example 1.3.4 Solve the systems of linear equations

T+ 2y +253=1 T+ 2y +253=0

$1+2x2+4x3:0 $1+2x2+4$3=1

:L‘1+3x2—|—9x3:0 l‘1+3x2+9$3:0

1.4 Applications

Example 1.4.1 (polynomial curve fitting) Find a polynomial func-

tion of degree n — 1
p(r) = ag + a1 + ayx® + - +a,_ "t

whose graph passes through the n-points in the zy-plane

(mlayl) ’ (:172ay2) )ttty (:I:n’yn> ’

where x; # z; for i # j.

Solution: To solve for the n coefficients of p(x), substitute each of the
n points into the polynomial function and obtain n linear equations

in n variables ay, ay,ay, ..., a,_;-

ag + a1y + apxi + -+ a, 2T =y,

ag + a1Ty + apr3 + -+ a, 123 =y,

ag + a,x, + ayr? + - +a, 2V =y,

1.4 Applications

7 R A !

13

The coefficient matrix of the system is:

2 n-1
1 =z, xf - xf
2
1 z, x5 - x5
1 T I2 xn—l

n n n

n—1

This kind of matrix is called Vandermont

matrix.
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We claim the linear system has a unique solution. It is too tough to
prove it using the method we learn in this chapter. It will become clear

once we finish Chapter 3.

Exercise 1.4.1 Determine the polynomial p(z) = ay + a;@ + ay2?

whose graph passes through the points (1,4),(2,0), and (3,12).

Exercise 1.4.2 Find a polynomial of degree four that fits the points
(—2,3),(—1,5),(0,1),(1,4), and (2, 10).

For the next question, note that 2012* = ?? is a very large number.

We should think of a smart way to solve this question.

Exercise 1.4.3 Find a polynomial of degree 4 that fits the points
(2011,3), (2012,5), (2013,1), (2014,4), (2015,10)

Network Analysis

Networks composed of branches and junctions are used as models in
such fields as economics, traffic analysis, and electrical engineering.
In a network model, you assume that the total flow into a junction is
equal to the total flow out of the junction. For example, the junction
shown below has 25 units flowing into it, so there must be 25 units

flowing out of it. You can represent this with the linear equation

X1

25

X3

Example 1.4.2 Set up a system of linear equations to represent the

network shown below. Then solve the system.
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Discussion: How to interpret the result?
Kirchhoff’s Laws.
In an electrical network,

1. All the current flowing into a junction must flow out of it.
2. The sum of the products TR ( I is curtent and R is resistance)

around a closed path is equal to the total voltage in the path.

Example 1.4.3 Determine the currents I, I, and I; for the electri-

cal network shown below.

Path 2 / Tty this Exercise.

Interpret the solution set of linear system from geometric viewpoint?

1.5 SageMath

SageMath is a free open-source mathematics software system with

Python-based language. its mission is to create a viable free open 5%&

source alternative to (the expensive) Magma, Maple, Mathematica

and Matlab (fO.l’l’lOLlS software). Figure 1.3: The logo of SageMath.

The official website is:
In this course, I will show you how to solve exercise 1.3.1 in the ac-  nhups://www.sagemath.org/.

companied lab manual, and much more.


http://webworkatujs.cn/Book-Linear-Algebras/webwork/ch1q8.html
https://www.sagemath.org/.




2 Matrix

A football stadium has three concession areas, located in the south,
north, and west stands. The top-selling items are peanuts, hot dogs,
and soda. Sales for one day are given in the first matrix below, and

the prices (in dollars) of the three items are given in the second matrix.

Numbers of Items Sold
Peanuts  Hot Dogs Sodas Selling Price

South Stand | 120 250 305 2.00| Peanuts
North Stand | 207 140 419 3.00| HotDogs
West Stand | 29 120 190 2.75| Soda

One can see that the way to record information is very effective. The

information is stored in matrix.

2.1 The equality of matrices

It is standard mathematical convention to represent matrices in any

one of the three ways listed below.

1. An uppercase letter such as A, B, ot C.

2. Arepresentative element enclosed in brackets, such as [ai j] , [bi j] .

3. A rectangular array of numbers

a;;  Gia A1p
Qg1 Qg9 QAon
aml am2 amn

The entry a,; of a matrix A is usually denoted as A, .

2.1 Equality of Matrices . . . . . 17
2.2 Matrices Operations . . . . . 18
2.3 Properties of Operations . . 22
2.4 The inverse of a matrix . . . 27

2.5 Elementary matrices . . . . . 30

Discussion: let’s discuss the means of rows

and columns of the matrix.
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Summerize here how to check two matrices

equal.

1.

1: Remark: A— B= A+ (-1)B.
[T TR A 8 S BRI

Try this Exercise.

A B = AB.
mxn nxXp mxp
‘ Equal

Size of AB

Figure 2.1: The size of AB

Definition 2.1.1 Two matrices A = [aij] and B = [bij] are equal
when they have the same size (m x n) and a;; = bij forl1<i<m

and1 <5< n.

Consider the four matrices

12 1
B =
341 l?)

Matrices A and B are not equal because they are of different sizes.

A:

=1 :s],arldD:l1 2]
x 4

Similarly, B and C are not equal. Matrices A and D are equal if and

onlyif z = 3.

2.2 The operations of matrices

Definition 2.2.1 (Addition and Scalar Multiplication)

Addition If A = [aij] and B = [bij

then their sum is the m x n matrix A + B = [aij e bij]. i

] are matrices of size m X n,

Scalar Multiplication If 4 = [aij] is an m x n matrix and ¢ is a
scalar, then the scalar multiple of A by ¢ is the m x n matrix

cA = [ca;;]-

)

Example 2.2.1 For the matrices A and B, find (a) 34, (b) —B, and
(©) 3A— B.

1 2 4 2 00
A=| -3 0 -1 | and B= 1 —4 3
2 1 2 -1 3 2

Definition 2.2.2 (Matrix Multiplication) If A = [aij] isanm X n
matrix and B = [b,;] is an n x p matrix, then the product AB is an
m X p matrix

AB = [Ci j]
whete

n
Cij = § aikbk:j
k=1

= ailblj ol a’i2b2j == ai3b3j = oo0 ¢ aznbnj
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Cyjv

dy dp 3 - - - 4 € G2 - - -
" bn bia by by, S
Gy Gpy 3 « « .« Ay b b €21 € v v v
P . o1 D22« o - Dy oL Dy Lo
toY by by . . by .. by =] 0
ay ap ag ... ay || 5 i Cii Ciovovoel
Pl by by .. by ... b :
A1 Ay A3+« Ay e Y " Cmt Cm2 + + -
ayby; + by + agby; + + a,b,; = ¢,
Example 2.2.2 Let
A= and B =

1. Find A + B and B + A. Is matrix addition commutative? that is,
A+ B=B+ A.

2. Find AB and BA. Is matrix multiplication commutative? that is,
AB = BA.
Definition 2.2.3 (Vector)

Column vector A matrix has only one column.

Row vector A matrix has only one row.

Let us fix the notations for vectors.

1. Boldface lowercase letters often designate column matrices and
row matrices. For instance, u, v, oy, ay-

2. A matrix can be partitioned into column vectors.

Discussion: Come back to the example at the beginning of this chap-

ter. How to interpret the result of matrix multiplication below?

120 250 305 2.00 1828.75
207 140 419 3.00 | = | 1986.25
29 120 190 2.75 940.50

Question: What is the total sales of all the three stands?

Cip
. Cop
.c

ip

« Cop.,

Put your answer here!

Try this Exercise.

P Vector can be considered as a
record of information.

P Matrix can be considered as a
record of a multiple-dimensional

information.
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Write down here what you found from this

exercise.

Critical thinking: Linear system < Matrix
equation. Someone claims that linear alge-

bra is a generalization of ax = b.

2: Zhyia; 38 SL: p R

Critical Thinking: The idea of partition.
Usually we see a matrix as a collection of

column vectors!

Let us try the next exercise as a motivation.

Exercise 2.2.1 Compute

3 —6 6
L3 |+2|-7|-| 8|+3]| -5]|-2
3 -9 12 -9

1

0 3 —6 6 4 2

2.1 3 -1 8 -5 8 —1
3 -9 12 -9 6 3
=)

One application of matrix multiplication is that the linear system

a1 T + ATy + ... Fax, = by
(91T1 + A9oTs + ... + 9, T,, = by
a’mlxl + am2x2 + o+ amnxn = bm

can be written as the matrix equation Ax = b,

a1 Qg ... Gy, zq b,
Ggy  Qgy ... Qo Ty | b,
Cppp Qo o Gy x, b,,

Let A = [aij] be a matrix of size m xn and letx =

matrix A as A = [ay @y ... «,,]. Show that
L0y + Toog + - + 2,0, = AX
» The linear system

Ty +2x9 +3x3 =0
4x1+5$2+6$3:3
7£B1+8£U2+9x3:6

. Partition?



» The matrix equation.

1 2 3 Ty
4 5 6 Ty | =
7 8 9 T3
p The vector equation.
1 2
$1 4 + £U2 5 + ‘/'U?) ==
7 8
Theorem 2.2.1 Let
ay; G - Qpp bi1  bio
A= Qg1 Gy ... Qgy and B — boy  boo
1 Gpa - Gy bnl bn2
Partition the matrix Bas B = [3; [, B,]- Then
AB=[AB; AB, AB,]

Proof. It is easy to see that both AB and [AS;, ApS,

have size m x p. We next show that

(AB>ij = [A/Bl ABQ Aﬂp]ij'

RHS = [AB, AB,
a; b

nnj

= LHS. Therefore, AB = [A3, Ap, AB,).

The theorem have a great consequence.

Brainstorm:
—2 4 —4

Let A = 1 —1 —1 |.Find a matrix B such that
—2 2 —1

AB =

o O =
o = O
= o O

Morteover, verify BA.

Aﬁp]ij = [Aﬁ]]z = ailblj + ai2b2j + +

2.2 Matrices Operations 21

Critical thinking The nature of linear sys-
tem is to express a vector as a linear combi-

nation of the other vectors.

p
by
SEAENIZ: 2T SRR A R R 2
142 44— RS LA BRI TR L.
SKECRE G LR, B ) R IARHE .
ABLl BIBCE B 5 AR CELLA

V) 3 BCTLA TR SRR T B (RIS (B

FEFEME) . LA (EFERIL) . B

LA [ T S5 o

BAIPE, IR TECAI RSO g
NIRRT SRIE 2 2 R

HFFERIFRLEY J7 3005 3k R e AR

0 W BAEAER Bl Ty R b !

What you learned from this example? Share

with us.
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KL OIS T I 7 S
eI

0 0 .. O

o 0 .. O
Omn = . .

0 0 0

2.3 Properties of matrix operations

Theorem 2.3.1 If A, B, and C are m x n matrices, and ¢ and d are

scalars, then the propetties below are true.

S U kL Dh o=

A+B=B+ A Commutative property of addition
A+ (B+C) = (A+ B)+C Associative property of addition.
(cd)A = c(dA) Associative property of multiplication
1A=A Multiplicative identity
c(A+B)=cA+cB Distributive property
(c+d)A=cA+dA Distributive propetty

One important property of the addition of real numbers is that the

an m X n matrix and O

number O is the additive identity. That is, ¢ + 0 = ¢ for any real

number ¢. For matrices, a similar property holds. Specifically, if A is

mn 18 the m x n matrix consisting entirely of

zeros, then A+ O, = A. The matrix O, is a zero matrix, and it is

the additive identity for the set of all m x n matrices.

When the size of the matrix is understood, you may denote a zero

matrix simply by O or 0.

Theorem 2.3.2 (Properties of Zero Matrices) If A is an m x n matrix

and ¢ is a scalar, then the properties below are true.

1. A+0,,, =A

2. A+(-A) =0
3. IfcA=0

mn

thenc=0o0r A=0,,,.

mn?
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Example 2.3.1 Solve for X in the equation 3X + A = B, where

A:ll _21 cmdB:l_3 4 .
0 3 2 1
Solution:
3X+A=B8B
(B3X +A)+ (—A) =B+ (—A) ( WL [E B (—A))
3X+(A+(-A)=B—-A ((HEr2.3.1, 55 2 £9))
3X 40, =B—A (FHAET2.3.2, 45 2 4%)
3X=B—-A (232, 41 %)
LX) =2(B—4)  (SATHERTLL)
(é3)x _ %(B A (hERE2.3.1, 45 3 5%)
1X = %(B —A) (HEHE23.1, 55 4 5%)
1
-7 2]
2 =2
3 3

Properties of matrix multiplications

Theorem 2.3.3 If A, B, and C are matrices (with sizes such that the
matrix products are defined), and ¢ is a scalar, then the properties

below are true.

1. A(BC) = (AB)C Associative property of multiplication.
2. AB+C)=AB+ AC
3. (A+ B)C = AC + BC
4. ¢(AB) = (cA)B = A(cB)

Distributive property

Distributive property

Proof.

mn?

1. Let A = [a;;]nn, B = [bij]y and C = [c;],,,- To show this
statement, it is enough to show that (A(BC)),; = ((AB)C),;-

R BUA IR T AR T
FoT B BN EARE -

Try this Exercise.
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We use this property very often in this

course.

3: To show a statement is false, you only

need to give an example.

LHS =

aik(BC>kj
k=1

n p
= Z (aik (Z bklclj> )
k=1 =1
n p
= Z (Z aikbklclj>
k=1 \I=1

=0;1011C15 + 41 b19Co5 + oo+ A by pCy;
+a;5091C15 + ;101905 + - + a59by,0,;
+...

"‘ambmclj + ambmczj + ...+ ambnpcm-
:ailbllclj + ai2b2101j + ...+ ambnlclj
Fai1b19C9; + a51b19Co5 + .o + @, bp00;
—l—aﬂblpcpj + amepcpj + ...+ ambnpcpj
=(a;1b11 + a;3b01 + .o+ ay,b,1)cq

2. Practice.

3. Practice.

4. Let A = [a;i],pn, B = [bijlnp
matrices ¢(AB), (cA)B and A(cB) have the same size. We are

going to show that

It is easy to see that the the

(C(AB))ij = ((CA)B)ij = (A<CB))ij'

(AB)Z-j = 1;1 ;1o thus (c(AB))ij = c(AB)Z-j =c 121 ;1byj-
((CA)B)ij = El(ca'ik>bkj = ck; a’ikbkj'

(A(eB));; > aip(chy;) = ¢ Y a;by;. The statement is
k=1

k=1
proved.

O]

Commutativity is a strong propetty for matrix multiplication. How-

ever, it does not hold in general®.
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Example 2.3.2 Show AB and BA are not equal for the matrices

1 2 -1
A = 3 and B =
9 —1 0 2
Solution
[ 1 172 1] [2 1
B 3 _ 5,
2 1] |0 2] |4 —4]
2o 1] [1 3] [o 7]
BA = =
0 2|2 1] [4 —2]
Thus AB # BA.

We next show that cancellation property is not valid in general.
Example 2.3.3 Show that AC = BC, where

]_ _
3L B_l24]’0_[ 1 2}
0 1 2 3 1 2

A:

Identity matrix

A special type of square matrix that has 1’s on the main diagonal and

0’s elsewhere is called an identity matrix.

When the order of the matrix is understood to be n, you may denote

I, simply as I.
Theorem 2.3.4 (Properties of the Identity Matrix) If A is a matrix
of size m X n, then the properties below are true.

1. AL, = A.
2. I, A=A

What is your conclusion of Example 2.3.3?
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and F =

M =a,

2 Matrix

ayp Qo Ain
_ Q21 QA9 Aop
Ap1 Apa Ay
o o0 - 0 —a,
1 0 —apn
0 1 —Q, o
o o0 - 1 —a,

Frtta, F %4 4aq, E.

1. Show that Ae; = Me;,.

FA from
now on. Show that Ae, = Me,.
(Hint: e, = Fe;)

Show that A = M.

Suppose that AF =

There is an unexpected results from Theorem 2.3.4. Partition identity

matrix [, = [ey ey ... e,], where

Example 2.3.4 Let A = [ay a4y ... a,,]. Show that Ae, = ;.

Definition 2.3.1 If A is an n x n matrix and if k is a positive integet,
then A* denotes the product of k copies of A:

Ak =A..A

o
k

1

1
Example 2.3.5 Let A = |:
1

] . Use mathematical induction to

1 k
0 1

show that

Ak =

In mathematics, the Fibonacci sequence is a sequence in which each

number is the sum of the two preceding ones, that is,
Fn+l :Fn+1+Fn'

Numbers that are part of the Fibonacci sequence are known as Fi-
bonacci numbers, commonly denoted F),. the first few values in the

sequence are:
1,1,2,3,5,8,13,21, 34, 55,89, 144

The Fibonacci sequence {F } can be described by this matrix. Indeed,

for anyn € N,
Fn+2 _ 11 Fn+1 An+1 Fl
Fn+1 1o Fn FO
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1 1
0

Exercise 2.3.1 Find A*if A =

Transpose

Definition 2.3.2 Let A be a m x n matrix. The transpose? of A is
the n x m matrix,denoted by AT, whose columns are formed from

the corresponding rows of A.

Theorem 2.3.5 Let A and B denote matrices whose sizes are appro-

priate for the following sums and products.

1. (ATYT = 4

2. (A+B)T=AT+ BT

3. For any scalat, (rA)T = r(AT)
4. (AB)T = BT AT

Proof. ]

2.4 The inverse of a matrix

Definition 2.4.1 (Inverse of a Matrix) Annxn matrix A is invertible

(or nonsingular) when there exists an n x n matrix B such that
AB=BA=1,

where [, is the identity matrix of order n. The matrix B is the (mul-
tiplicative) inverse of A. A matrix that does not have an inverse is

noninvertible (or singular).

Theorem 2.4.1 (Uniqueness) If A is an invertible matrix, then its

inverse is unique.

Since the inverse is unique, the inverse of A is denoted by A~1.

a b
c d

Theorem 2.4.2 Let A =

In Burope, people study the linear system
like

1 2
[, 732]{3 4}:[5 6].

With the notion of transpose, we are able

to solve it in our way Ax = b, that is,

IR

In mathematics, we solve one case, and
then try to convert the others into this case.

It is a great idea!

Questions: how to show the inverse is

unique?
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Comment: As a math major student, you

should have the mathematical thinking.
For instance, from the definition of invert-

ible, you can show or prove the statement,

not just memorize it.

» A isinvertible if and only if ad — bc # 0.
» if ad — be + 0, then the inverse is

1 d —b
Al =
ad — be l —C a ‘|

The method used next is totally different with the one for n = 2.

Discussion: Suppose A is invertible. Are you able to see that AB = I,

as n-linear systems?

Let B = [y, 5y,...,8,) and I, = [e;,e,,....€,]. AB = I, can be

read as

AB = A[By, B, ., By = [AB1, ABy, ..., AB,] = [€1, €9, ..., €,].

Thus we have consistent linear systems

ABy =€, ABy =e,, ..., AB, =¢,.

Lemma 2.4.3 Let A be a matrix of size n x n such that the n Linear
system Ax = e;, AXx = e,,..., Ax = e, are consistent. Then for

every b € R®, Ax = b is always consistent.

Proof. Foranyi =1,2,...,n—1 or n, since the linear system Ax = e

is consistent, we may assume the solution is (3,, that is, AS;, = e;. Let
by
b

b=| ? |. Thus

n

b =be; + byes + ... + b,e,.

A1 By + byBy + ... +b,8,,) = A(by 1) + A(byS3y) + ... + A(D,,5,)
= by (ABy) + by (ABy) + ... +b,(A8,)
=bre, +bye,+ ...+ be,
=b

Recall from Theorem 1.3.2 that the linear system Ax = b is always

consistent, then the coefficient matrix A can be reduced to T .
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Algorithm for finding A~}
The key point here is: if A is row equivalent to I, then [A  [] is row
equivalent to [ A~!]. Otherwise, A does not have an inverse.
1 -1 0
Example: Find the inverse of the matrix 4 = 1 0 —1
—6 2 3
1 2 0
Example: Show the matrix A = 3 -1 2 | has no inverse.
—2 3 =2
Theorem 2.4.4 If A is an invertible matrix, k is a positive integert,
and c is a nonzero scalat, then A=1, A% cA, and AT are invertible
and the statements below are true.
LA =
2. (AT =AtA A = (A7)
3. (cA)™t = %Afl
4. (47) " = (4"
Theorem 2.4.5 If A and B are invertible matrices of order n, then
AB is invertible and
(AB)"' =B1A!
Corollary 2.4.6 If A,, i = 1,2, ..., n are invertible square matrices
of same size, then
(A AzAg--A,) " = At Azt AT AT
Theorem 2.4.7 If C is an invertible matrix, then the properties be-
low are true.
1. If AC = BC, then A = B. Discussion: Let A be an invertible n x n
2. IfCA=CB.then A = B matrix. Sometimes, the inverse question of

Theorem 2.4.8 will be asked. That is, if the

matrix equation Az = b is always consis-

Theorem 2.4.8 If 4 is an invertible n x n matrix, then for each b in

hint: A is invertible if and only if A is row

n 5 _ . - =
R™, the equation Ax = b has the unique solution x = A="b. reduced to the identity matrix.

tent for any b € R™, is A invertible?
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2.5 Elementary matrices

Elementary Row Operations

There are three elementary row operations for matrices listed be-

low.

1. (Replacement) Replace one row by the sum of itself and a
multiple of another row.
2. (Interchange) Interchange two row.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Similarly one can define elementary column operations.

Elementary Column Operations

There atre three elementary column operations for matrices listed

below.

1. (Replacement) Replace one column by the sum of itself and
a multiple of another column.

2. (Interchange) Interchange two columns.

3. (Scaling) Multiply all entries in a column by a nonzetro con-

stant.

Definition 2.5.1 (Elementary Matrix) An n X n matrix is an elemen-
tary matrix when it can be obtained from the identity matrix I, by

a single elementary row operation.

Question: Which of the matrices below are elementary matrix? For

those that are, describe the corresponding elementary row operation.

100 - 100
100

alo 3 0 b. |0 1 0
010

L0 0 1 | - 00 0

(1 0 0] 1o 10

dlo o0 1 62] 10 2

L0 1 0 | - 00 —1




2.5 Elementary matrices

There are three types of elementary matrix. We denote

1
1
0 - 1 1 — th row
E(i, j) = 1 O j_throw,
1
1
1
1
E(isk) = k i — throw
1
1
1
1 1 — th row
Fesb = Eoe 1 j—throw
1

Theorem 2.5.1 (Elementary Matrices Are Invertible) If E is an ele-

mentary matrix, then E~! exists and is an elementary matrix.

Proof: (Direct computation)

31
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Why this theorem is so important? We can
write the elementary matrix operations into
matrix multiplication. The latter can be un-

derstood by the computer!

Example 2.5.1 Verify

o1 0]f[o 2 1 1 -3 6
@ |10 0 1 -3 6|=|0 2 1

@
(a]
=
w
()
|
—
w
()
|
—

i 0 0][1 0 —4 1 0 —4 1
(b) 3 02 6 —4|= 1 =2
i o 1/[l0o1 3 1 1 1
1 0 0] 1 0 —1 0 —1
(c) -2 —2 3 |= 9
001]| 0 4 5 4 5
Exercise: Fill the blank below.
0o 2 1 01 0
(1) -3 6 10 0]=
3 2 —1 00 1
1 0 —41] 0
(2.1 0 2 i =
0 1 i 0
1 0 -1 100
3).] -2 -2 3 21 0|=
0 4 J Lo 01

Theorem 2.5.2 (Representing Elementary Row(Column) Operations)
LetA be an m x n matrix. Let E be the elementary matrix obtained
by performing an elementary row(column) operation on I, (I,,). If
that same elementary row(column) operation is performed on A,

then the resulting matrix is the product FA(AE).

Example 2.5.2 (Using Elementary Matrices) Find a sequence of el-
ementary matrices that can be used to write the matrix A in row-

echelon form.
0 1 3

A=11 =3 0
2 —6 2



2.5 Elementary matrices

SOLUTION
Elementary Row Elementary
Matrix Operation Matrix

[1 -3 o 2] R, ©R, [0 1 o

0 1 3 5 E =1 0o 0
12 -6 2 0] 10 0 1
[ -3 o 2] [1 0o 0

0 1 3 5 Ry + (=2)R, >R, E,=| 0 1 0
10 0 2 —4] 1-2 0 1
1 -3 0 2] [1 0 o

0 1 3 5 E; =10 1 0
o 0o 1 -2 ()R, >R, o o 1

The three elementary matrices E,, E,, and E; can be used to perform the same elimination.

[1 o o 1 o ofo 1 offo 1t 3 5
B=EEEA=|0 1 0] 0 1 of1 0 oft -3 0o 2

0 0 ;-2 o 1lo o 1fl2-6 2 o
[1 o of 1 o o]t -3 o 2

={o 1 of o 1 ofo 1 3 5
0 0 ;-2 o 1][2-6 2 o0
[t o offt -3 o 2 1-3 0 2

={0 1 offo 1 3 5/=|0 1 3 5
o o o o 2-4] Jo 0o 1 -2 ™|

Definition 2.5.2 (Row Equivalence) Let A and B be m x n matrices.
Matrix B is row-equivalent to A when there exists a finite number

of elementary matrices E, F,, ..., E}, such that

B = EkEk‘—]. E2E1A

Theorem 2.5.3 (A Property of Invertible Matrices) A square matrix
A is invertible if and only if it can be written as the product of

elementary matrices, that is,
A=EE; - EE,,

where E; are elementary matrices.

Corollary 2.5.4 A square matrix A is invertible if and only if it row

equivalent to identity matrix.

Example: Find a sequence of elementary matrices whose product is

the nonsingular matrix

-1 -2
3 8

Theorem 2.5.5 (Equivalent Conditions) If A is an n x n matrix, then

the statements below are equivalent.
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1. A is invertible.

2. Ax = b has a unique solution for every n x 1 column matrix
b.

3. Ax = 0 has only the trivial solution.

4. Ais row-equivalent to [, .

5. A can be written as the product of elementary matrices.

Identity matrix: [,,

Scalar matrix: \J,,

Diagonal matrix A such that a,; = 0 for all 4 # j.
Elementary matrices: (3, j), E(i; k) and E(i, j; k).
Zero matrix.

Upper triangular matrix: a;; = 0 for all i > j.
Lower triangular matrix: a;; = 0 forall 7 < j.

Strictly Upper triangular matrix: a, ;=0 forall ¢ > j.

A A A ol R

Strictly lower triangular matrix: a; ;= 0 forall i < j.

Exercise: Let A be an x n strictly upper triangular matrix. Show that

A" =0.



Motivation

The purpose of this section is to define the determinant of the square

matrices of2 x 2 and 3 x 3.

linear system in two variables

Solve the linear system

ane +apy =b

A9 T + A9y = by

1. We may assume that a;; # 0 and a,; # 0. Otherwise, the
linear system is equivalent to an linear system in echelon form
which is easy to solve. Then we obtain an equivalent linear

system

A21011% + Qg1 G12Y = Ag1bq (1)

11091 + Qq1G02Y = G110y (2),

2. equation (2) subtracts equation (1) gives (an equivalent linear

system)

A91A11T + Gg1Q12Y = dg1by

(a11G99 — G19091) Y = @y by — a9 by,

3. Ifayya95 — aqpa 0, then gy = —411b2=bida;
11022 12021 # 0, Y= ai020—a12a9;

4. (Question:) Figure out the value of z.

» It seems that ay;a49 — aqya4; is critical for the linear system.

3.1 Definition of determinant . . 37

3.2 Row operations and Det . . 40
3.3 Properties of Determinants . 41

34 Cramer’sRule . . . ... ... 42
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p Define the determinant of the 2 x 2 matrix

How to memorize it? Qg1 Q22
ay ayy app Qi |
- = Q11092 — Q12091
> Qg1 Qg
a a
Solve 2 22

p The solution can be expressed as

by ayy aj; b

by a9y D, ag by D,
T = = D’ Y= = :

ap; Q12 aj;  Qp2

Qg1 Qg2 Qg1 Qg9

linear system of three variables

For the linear system in three variables,

a1 @ +apy+ a3z =10
U1 % + Gg9Y + 932 = by

a3, + a3y + a3z = by

Ifa11a22a33 +a12023031 + Q13021033 — Q11023032 — Q12021033 — 13032031 F 0, then

the linear system has a unique solution:

b1Gy9a33+a15093b340a13bya39—ban3a35—a15bya33—a;3a55b3

T =
A11022033+F012053031+013051035—011023032— 012021033~ 01302203]
In 2022, T thought it is not easy to see how y = 1105033101 G030511+0153a91b3—a11093b5—b1 a0 a33—a13b5a57
to get this formula! With the help of Sage- Q110250331 0150930311013051035—0110930302— 012021033~ 01302203]
Math, it seems a easy question.
> V4 @11G99b3+a15bya3,+b1ag1a30—a;,bya305—a1509,b3—b agsa3,

1102203310 15053031+013051035—011023032— 012021033~ 01302203]

Define the determinant of 3 x 3 matrix

A way to memorize the definition of
determi a1 Q12 Qg3
eterminant.

(g1 Qgy (gg | =011A9033 1 Q19093031 1 A13091A3p

\ \\ \\ az; dzp Qg3
\\ \\ \ — A11093039 — Q12021033 — Q1302203

An observation
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(11092033 + 19093031 + Q13001 A39 — A11093039 — G19001033 — Q13022031

=a11(Ag033 — Ag3039) + a12(a23a31 - a21a33) + a13(a21a32 - a22a31>

B Qgp Q23 Qg1 Q23
=aqq —aqg + a3
Qza  0G33 az; 0ags3
Therefore
ap; Qiz2 Qi3
B Qg QGo3
Qg1 Qgp Qg3 | = 011
gy 0A33

gy Qzz A3z

Area and Volumes

Compute the area of a parallelgram determined by vectors (1, 3) and

4,1).

One way to get the area is to compute the absolute value of the detet-

minant of the matrix

1 3
4 1
Here is another example.
The absolute value of the determinant of A
is the volume of the parallelgram, where 'y

1 3 2
A=12 -3 -1
0 0 4

Qg1

asy

L))

32

Qg1 Q23 +a Qg1
13

az; 0agz3 asy

3.1 Definition of determinant

AB = (1,2.0)

AC = (3,-3.0)

Qg2

Critical thinking: We can define determi-
nants of 3 x 3 matrices in terms of deter-
minants of 2 x 2 matrices. This encourages
us to define determinants of 4 x 4 matrices
in terms of determinants of 3 x 3 matrices.
Inductively we can define the determinants

of n X n matrices.

Find the area of this parallelgram

B(1.3)

Area?

' / c4.1)
v
A

Figure 3.1: Geometry interpretation of de-
terminants
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Definition 3.1.1 (Minors and Cofactors of a square matrix) If A
is a square matrix, then the minor M;; of the entty a;; is the de-
terminant of the matrix obtained by deleting the i-th row and j-th

column of A. The cofactor C; of the entry a,; is C;; = (—1)i+jMij.

3 1 —4
Example 3.1.1 Let A= | 2 5 6 |.Find the minor M,,, M,,,
1 4 8

M5, Cqq,C15 and C 4, respectively.

Definition 3.1.2 For n > 2, the determinant of an n x n square

matrix A = [aij] is defined as

det(A) = ay My —apMyy+ ...+ (=1)"ay, M,

- Z(—l)lﬂ'alelj
j=1

Example 3.1.2 Using definition compute the determinants of the

matrices below, respectively.

3 =7 8 9
Observation. det(B) equals to the product 31 4 0 -5 7
of diagonal entries. A = 2 5 y B =
0 )
1 4
0 0 4

There is a better way to compute the determinant of a square ma-

trix.

Theorem 3.1.1 The determinant of an n x n matrix A can be com-
puted by a cofactor expansion across any row ot down any column.

The expansion across the ¢ th row using the cofactors is
det A = a;;C;; + a;5C;5 + - + a;,C;,,
The cofactor expansion down the j th column is

Toughest Question so far: How to prove the det A = a’ljclj + a’2j C2j + ot a’nanj
theorem?

Vote: Should we prove this theorem?
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=7 2 2
3 0 —4
Example 3.1.3 Compute
-5 —8 0 3
0 5 0 —6

Corollary 3.1.2 Let A be an n x n matrix. If there is a zero row or

zero column of A, then det(A) = 0.

Next, we give the definitions of upper and lower triangular matri-

CEs.

1. Upper triangular matrices.

a;p Qr2 Qg3 a1 mn—1 A1pn
0 agy ag A9 n—1 Qo
0 0 ag as n—1 A3y
a’nfl,nfl anfl,n
L O ann .

2. Lower triangular matrices A = [a, ;] with a;; =0 forall i < j.

ij]

aqy 0 0
Qg1 Qg2 0
a3y g2 ass3
Ap—1,1 Ap-12 Aup_13 *° Gp_1p-1 0
L Qn.1 an .2 an.3 0 Ann

Example 3.1.4 Compute the determinants of the upper and lower

triangular matrices, respectively. Briefly explain your method.

Example 3.1.5 Compute the determinants of the elementary matti-
ces E(i,j), E(i; k) and E(i, j; k), respectively.
Exercise 3.1.1 Compute the determinant of the matrix

0 ayy,

aypq 0

)

0 An—1,2

Critical thinking: a square matrix is
row equivalent to an upper triangular
matrix! that is, there exist elementary
matrices E,,E,,...,E, such that
E.E, ,..E;A is an upper triangular

matrix.



40 3 Determinant

3.2 Row operations and Determinant.

Lemma 3.2.1 If two rows of a matrix A are equal, then det(A) = 0.

This lemma can be proved by mathematical induction.

Theorem 3.2.2 (Elementary Row Operations and determinants) Let

A be a square matrix.

1. If one row of A is multiplied by k to produce B, then
det(B) = kdet(A).

2. If a multiple of one row of A is added to another row to

produce a matrix B, then
det(B) = det(A).
3. If two rows of A are interchanged to produce B, then

det(B) = —det(A).

Interpretation of Theorem 3.2.2

Let A be a square matrix and F is an elementary matrix. Then

det(FA) = det(F) det(A).

Corollary 3.2.3 Let A be a square matrix and E,, E,, ..., E,, are

Critical thinking: It is more efficient to com-

pute the determinant of a matrix through it elementary matrices. Then

is echelon form.

det(E, E,, ;...E A) =det(E,,)det(E,, ;)...det(E;)det(A).

Corollary 3.2.4 (Determinant of a Scalar Multiple of a Matrix) If A
is a square matrix of order n and ¢ is a scalar, then the determinant

of cA is det(cA) = ¢" det(A)

Compute the determinant of the matrix A, 1 —4 2
i 72 g 1§ Example 3.2.1 Compute det(A), where A= | —2 8 —9
where A = B
-3 0 1 -2 =1 7T 0
1 -4 O 6



3.3 Properties of Determinants

3.3 Properties of Determinants

Recall that A square matrix A is invertible if and only if it can be
written as the product of elementary matrices. Thus it follows from

Corollary 3.2.3 that

Theorem 3.3.1 A square matrix A is invertible iff det(A) # 0.

Theorem 3.3.2 (Determinant of a Matrix Product) If 4 and B are
square matrices of order n, then det(AB) = det(A) det(B).

The next corollary follows from Theorem 3.3.2.

Corollary 3.3.3 (Determinant of an Inverse Matrix) If Aisann xn

invertible matrix, then det (A1) = deiA)-

Example 3.3.1 Use two ways to compute |A!|, where

3 1 -2
A= 2 0 0
—4 -1 5
0 3
Example 3.3.2 Let A= [ 0 —1 2 |,and B be a3 x 3 matrix
1

whose determinant is —2.

Find det(A).
Find det(2A).
Find |41,

Find det(A3).
Find det(A?2B~3).

o> o =

Determinant of a Transpose

Theorem 3.3.4 If A is a square matrix, then

det(A) = det (AT)

41
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Conditions That Yield a Zero Determinant

If A is a square matrix and any one of the conditions below is true,

then det(A) = 0.

1. An entire row (or an entire column) consists of zeros.

Observation: the second and third condi- 2. Two rows (Or COlumnS) are equal.
tions yield a zero row (column) after the el- 3. One row (or column) is a multiple of another row (or col-
ementary row(column) operation: replace-
umn).
ment.
)
3.4 Crametr’s Rule
Let A= [aij} be an n x n matrix and |A| = D.
Observation: Compute the determinant of the matrix
ayp Q12 Qi3 - Qg
;1 Qo Qg ... Gy, 1 — th row
B =
all a/zQ a,LS ee aln j — th row
A1 (%) an3 Apn
Note that you should consider the cases 7 = j and ¢ +# j.
Lemma 3.4.1 Let A be an n x n matrix and |A| = D.
Let A be an n x n matrix and |A| = D.
Compute .
Cpy + a3Chy + + + a3, C D, ifi=r
Qa; a.;: “ee Q. =
a,;C;+ay;Cy.+-+a,,C,.. 11~rl 12~r2 n~'rn .
1 15 2 27 X3 ¥ O’ lf 7 7& r
2 —2
1
Example 3.4.1 Let A =
—6
-1 3 =2

Find
2. Myg + 2Msyy + 3M,s.

3. 3Cs + 204 + Cyy — 2Cs,.



This lemma has two unexpected consequences: the second way to find

the inverse of an invertible matrix and solving linear system.

Inverse of a matrix

ap;  Qpo A1n
Q1 Qg Qop,
Let A = ' ' " |. Define the adjoint matrix of A,
a;1 Qo .. Gy,
L p1 Gpo - Ay

denoted by adj(A),
adi(A) = Cu. C'22‘ C'nQ.

Cln CZn Cnn

Theorem 3.4.2 If A is an n x n invertible matrix, then

-1

1 .
= e d) adj(A).

Critical thinking: Compute A adj(A) and adj(A)A, respectively.

Cramet’s rule

Theorem 3.4.3 Let A be a square matrix of size n and det(A) # 0.

The linear system Ax = b has a unique solution

L1
zy | 1 .

. | = Towa) AP
X

n

Objective: Find another way to compute x,.

3.4 Cramer’s Rule

43
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Then

1 . 1
Z; = [m adj(A)b]; = m(blcu + byCo; + ... +0,C,;)

For any n x n matrix A and any b € R”, let A,(b) be the matrix

obtained from A by replacing column ¢ by the vector b.

4;(b)=fa; - b - a)]

Theorem 3.4.4 (Cramer’s Rule) Let A be an invertible n x n matrix.
For any b in R”, the unique solution x of Ax = b has entries given
by

_ det Ay(b)

A4l g
Ti= Tdeta 0 T o™



Vector Spaces

Vector space is a set of objects which satisfy 10 axioms!. The objects
are called vectors. Vector space plays the role as the real numbers in
Calculus. The set of all column (row) vectors with vector addition and

scalar multiplication is a vector space, denoted by R™. That is,

ay
R" = %2 a; € R p, with the operations
a’TL
Ty Y1 T+ xq Cxq
Too| | Y2 | | P2 + Y2 | qnd e 55.2 _ | T2
Tn Yn Ty + Yy Ty cx,,

Motivation: Vectors in the plane

Observations

Let u, v, and w be vectors in the plane, and let ¢ and d be scalars.

Then the following ten equations hold.

u + v is a vector in the plane.
u+t+v=v+4u
(u+v)+w=u+(v+w)
u+0=nu

u+(—u)=0

cu is a vector in the plane.
c(u4v)=cu+cv
(c+d)u=cu+du

c(du) = (ed)u

1(u)=u

e N O e S S

=
=

Theorem 4.0.1 Let v be a vector in R™, and let ¢ be a scalar. Then

the properties below are true.

1. The additive identity is unique. That is, if v + u = v, then
u=20.

4.1 Vector Space R™ . ... ... 46
4.2 Abstract Vector Space . . . . 48
4.3 Row and Column spaces . . 59

4.4 From Abstract to concrete . 61

Lo ANHE A HRICHRIER]



46 4 Vector Spaces

2. The additive inverse of v is unique. That is, if v+ u = 0, then

u = —V.
ov=20
c0=0

If cv=0,thenc=0o0rv=0.

A

—(=v)=w.

4.1 Vector Space R"

In this section, all vectors are in R™.

Contents

46 Linear Combinations

Linear Combinations .

Linear independent . 46
4 An important type of problem in linear algebra involves writing one
Span. . . . . . ..
e vector x as the sum of scalar multiples of other vectors v, v,, ..., and
v,,- That is, for scalars ¢4, ¢, ..., ¢,
X =0V +CVy + e+ 6V,
The vector x is called a linear combination of the vectors v, v,, ...,
and v with weight ¢, ¢, ..., C,.
Example 4.1.1 Let vectors x = (—1,—2,—2),u = (0,1,4), v =
(—1,1,2),and w = (3,1, 2) in R3. Find scalars a, b, and ¢ such that
X = qu + bv + cw
Example 4.1.2
2 2 -3 —16 10 2
rref
Giventhat| 1 2 —2 —14 - 0 —4 | Write
11 -1 —6 0 4
—16 2 -3
~16 2 2 37 .| —14 | asalinear combination of | 1 |, , | —2
—14 = 1 +_ 2 +_ —2
[6} [ } [1} [1} —6 1 —1

Linear independent

Definition 4.1.1 An indexed set of vectors {Vl, ,Vp} in R™ is said



to be linearly independent if the vector equation

Ty Vy + TyVy + ot x,v, =0

has only the trivial solution. The set {vl, ,Vp} is said to be lin-
early dependent if there exist weights ¢4, ..., ¢y, NOL all zero, such
that
¢V + CVy + -+ v, =0
1 3 0
Example 4.1.3 Show that 11, 0 , | 6 linear inde-
1 —1 1
pendent.
Span

Definition 4.1.2 If v;,v,,...,v, are in R™, then the set of all lin-
car combinations of v;,v,, ..., v, is denoted by Span{v,, vy, ..., v, }.
That is, Span{v,,v,, ..., v, } is the collection of all vectors that can

be written in the form

{e1v1 + Vo + .. ¢V, e, 69,05, € RY.

Example 4.1.4 show R3 = Span 1

Basis

Definition 4.1.3 A basis for R” is a lineatly independent set that

spans R™.

1 3 4
Example 4.1.5 Is {[ 4 } i [ 2 } , { 6 }} a basis of R3?

-3

1 3 4
Example 4.1.6 Is ’;‘ i z , ’i a basis of R*?

4.1 Vector Space R™

47
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Contents

Subspace . . . . . . 49
Linear combination . 51
The span of a set . . . 53
Linear independence . 54
Basis . . . . . .. 56

Zero vectors

. The zero vector of R™ is

0

. The zero vector of P (2)is0 = 0+
0z + 022 + ... + 0z™.

. The zero vector of M,  (R) is

(o]

. The zero vector of C(—o0, 00) is

0, the zero function.

4.2 Abstract Vector Space

Definition 4.2.1 A vector space is a nonempty set V' of objects,
called vectors, on which are defined two operations, called addi-
tion and multiplication by scalars (real number), subject to the ten
axioms list below. The axioms must hold for all vector u, v, and w

in V and for all scalars ¢ and d.

The sum of u and v, denoted by u + v, is in V.
ut+v=v+u
(ut+v)+w=u+ (v+w).

There is a zero vector 0 in V' such thatu 4+ 0 = u.

AR o

For each u in V, there is a vector —u in V such that u +
(—u) =0.

The scalar multiple of u by ¢, denoted by cu, is in V.
c(u4v)=cu+ecv

(c+ d)u = cu+ du.

¢(du) = (cd)u

10. 1u = u.

Y o o

Five Examples of Vector Spaces

Ly
To . .
p The space R"* = x; € R p is a vector space with op-
l‘n
erations
Zq Y T+ Zq CTy
x To + x cx
2| 4 Y2 | _ 2 T Y2 and ¢ 2 | _ 2

» LetP (z) = {ag+a;z+...+a,2"|a; € R} with two operations

(g +ax+ ...+ a,2") + (bg + bz + ... + b,2™)
=(ag+by) + (ag + b))z + ... + (a,, + b,,)z™.
k(ag + a1z + ... + a,2™) = (kay) + (kay)x + ... + (ka, )x"

.. Gy,

» Let M, (R) = : : a;; € R > is a vector

Qa a

ml - mn
space with the usual matrix addition and scalar multiplication.
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» Let C(—o0,00) be the set of all real-valued continuous func-
tions defined on the entire real line. C'(—o0, 00) is a vector

space with operations

(f +9)(x) = f(z) + g(x) and (cf)(z) = c[f(z)]

» Define Cla, b] be the set of all real-valued continuous functions
defined on the interval [a,b]. C|a,b] is a vector space in the

above sense.

Theorem 4.2.1 Let v be any element of a vector space V, and let ¢

be any scalar. Then the properties below ate true.

1. ov=0

2.¢c0=0

3. Ifcv=0,thenc=0o0rv=0.
4. (=1)yv=—v.

Corollary 4.2.2 Let V be a vector space. Then the zero element of

V is unique.

Sets that are not Vector Spaces

1. The set of all integers (with the standard operations) does not
form a vector space.
2. The set of all second-degree polynomials is not a vector space.

3. P={l1+ayz+...a,2"|a; € R} is not a vector space.

Example 4.2.1 Let V = R?, the set of all ordered pairs of real num-
bers, with the standard operation of addition and the nonstandard

definition of scalar multiplication listed below.
c <$17 ‘IQ) = (Cxla 0)

Show that V is not a vector space.

Subspace

Observation: If W is a subset of a vector

Definition 4.2.2 A nonempty subset W of a vector space V is a
subspace of V when W is a vector space under the operations of satisfied automatically.
addition and scalar multiplication defined in V.

ut+v=v+4u
(utv)+w=u+(v+w).
clu+v)=cu+cv

(¢ +d)u=cu+du

c(du) = (cd)u

10. lu=u.

R T
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In many applications in linear algebra, vector spaces occur as sub-

spaces of larger spaces.
1. The sum of u and v, denoted by u + v, is in V.
4. There is a zero vector 0 in V such thatu + 0 = u.
5. For each uin V, there is a vector —u in V' such thatu+ (—u) = 0.
6. The scalar multiple of u by ¢, denoted by cu, is in V.
Theorem 4.2.3 (Test for a Subspace) If W is a nonempty subset of

a vector space V, then W is a subspace of V if and only if the two

closure conditions listed below hold.

1. Ifuand v are in W, then u + v is in W.

2. If uis in W and ¢ is any scalar, then cu is in W.

Trivial subspace

There are two obvious subspace of a vector space V.

1. {0} 2.V.

We call them trivial.

Example 4.2.2 Let W be the set of all 2 x 2 matrices such that AT =
A. Show that W is a subspace of the vector space M, 5, with the

standard operations of matrix addition and scalar multiplication.

Example 4.2.3 Show that W = {(z,,z5): z; >0 and x, > 0},

with the standard operations, is not a subspace of R2.

Theorem 4.2.4 If V and W are both subspaces of a vector space U,
then the intersection of V' and W (denoted by V N W) is also a
subspace of U.

Example 4.2.4 Let TV, be the vector space of all functions defined



on [0, 1], and let W, W, W5, and W, be defined as shown below.

W, = set of all polynomial functions defined on|0, 1]
W, = set of all functions that are differentiable on [0, 1]
W5 = set of all functions that are continuous on [0, 1]

W, = set of all functions that are integrable on [0, 1]

Show that W; € W, C W5 C W, and that W, is a subspace of W,
forq < j.

Subspace of R?

Example 4.2.5 Determine whether each subset is a subspace of R2.

1. The set of points on the line x + 2y = 0
2. The set of points on the line z + 2y = 1

subspaces of R?

4.2 Abstract Vector Space 51

Remark: A subset W is a subspace of R™ is
a subspace only if 0 is in ¥ which is a vety

effective obsetrvation.

If W is a subset of R?, then it is a subspace if and only if it has one

of the forms listed below.

1. W consists of the single point (0, 0).
2. W consists of all points on a line that passes through the
origin.

3. W consists of all of R2.

Subspace of R?

subspace of R3

A subset W of R3 is a subspace of R? if and only if it has one of

the forms listed below.

1. W consists of the single point (0,0, 0).

2. W consists of points on a line that passes through the oti-
gin.

3. W consists of points in a plane that passes through the ori-
gin.

4. W consists of all of R3.

Linear combination
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Definition 4.2.3 A vector v in a vector space V is a linear combina-
tion of the vectors uy, u,, ..., u, in ¥V when v can be written in the

form

V= uy + cuy + -+ ¢ u

where ¢;, ¢, ..., ¢, are scalars, and are called weights.

1. (1,3,1) = 3(0,1,2) + (1,0, —5).
[0 8} {0 21 [—1 31 l—z o}
2. - +2 - .
2 1 10 1 2 1 3

Example 4.2.6

1. Write the vector w = (1,1,1) as a linear combination of

vectors in the set
S={(1,2,3),(0,1,2),(—1,0,1)}.

2. If possible, write the vector w = (1, —2,2) as a linear com-

bination of vectors in the set S above.

Example 4.2.7

1. Write the vector w = 1 + z + 22 as a linear combination of

vectors in the set
S ={1+2x+ 3%,z + 222, —1 + 22}.

2. If possible, write the vector w = 1 — 2z + 222 as a linear

combination of vectors in the set S above.

Exercise 4.2.1 Write w = l 0 as a linear combination of
1 2 0 1 -1 0

vectors v, = SV, = and Vq = .
30 2 0 1 0

Spanning sets

Definition 4.2.4 (Spanning Set) Let S = {v,,v,, ..., v, } be a subset
of a vector space V. The set S is a spanning set of VV when every
vector in V' can be written as a linear combination of vectors in S.

In such cases it is said that S spans V.



Example 4.2.8

p The set S = {(1,0,0),(0,1,0),(0,0,1)} spans R3 because

any vector u = (uy, Uy, Ug) in R3 can be written as

u = u,(1,0,0) + uy(0,1,0) + u5(0,0,1) = (uy, uy, ug) .

» The set S = {1,x,2%} spans P, because any polynomial

function p(z) = a + bz + ca? in P, can be written as

p(z) = a(l) + b(z) + ¢ (2*) = a + bz + ca?

Example 4.2.9 Show that S = {(1,2,3),(0,1,2), (—2,0,1)} spans
R3.

Exercise 4.2.2

» Show that § = {1+ 2z + 322, x + 22, —2 + 22} spans Py(z).
» S={(1,2,3),(0,1,2),(—1,0,1)} does not span R3.

The span of a set

Definition 4.2.5 If S = {v,,v,,..., v, } is a set of vectors in a vector
space V, then the span of S is the set of all linear combinations of

the vectots in S,
span(S) = {c; vy + cyVy + - + ¢ Vi|cy, g - 0 € R}
The span of S is denoted by
span(S) or span{vy, vy, ..,v;}.

When span(S) = V, it is said that V' is spanned by {v,, vy, ..., v.},
or that S spans V.

1 1
Example 4.2.10 Determine span(,S), where S = { l 1 , l ] }

0 1

Example 4.2.11 Find the value of ¢ for which v is in the set H,

4.2 Abstract Vector Space
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where
% =2 0
—4 —2
v = , H = span , ,
= 5 -3
a ! 2
Theorem 4.251f S = {v,,v,,..., v, } is a set of vectors in a vector

space V, then span(S) is a subspace of V. Moreover, span(.S) is

the smallest subspace of V' that contains S, in the sense that every
This is an important theorem of this chap-

er. other subspace of V' that contains S must contain span(S).

Linear independence

Definition 4.2.6 A set of vectors § = {v,,v,,...,v,} in a vector

space V is linearly independent when the vector equation
€1V + CoVy 4+ ¢V, =0
has only the trivial solution
Cl = 0,62 = 0,...,Ck = O-

If there are also nontrivial solutions, then S is linearly dependent.

Example 4.2.12 Determine whether the set S below of vectors in

R3 is linearly independent or linearly dependent.

S ={vy,vy,v3} ={(1,2,3),(0,1,2),(—2,0,1)}.

Example 4.2.13 Determine whether the set S below of vectors in

P, is linearly independent or linearly dependent.

S={l+=z—222+5z— 2% z+2%}

Example 4.2.14 Determine whether the set of vectors in M, , is

linearly independent or linearly dependent.

Sl (ERSE T P
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Example 4.2.15 Determine whether the set of vectors in R? is lin-

eatly independent or linearly dependent.

1 1 0
0 1 1
S={v y Vo, V3, V. = ) ) ’
{ 1> "2> '3 4} 1 0 1
0 2 —2 2

Exercise 4.2.3 (a). Determine whether the set of vectors in R* is

linearly dependent.

1 0 0 1
0 1 3 1
S = ) ) ) )
-1 0 1 -1 1
0 2 2 —2 1

(b). show that span(S) = R*.

Theorem 4.2.6 Suppose that {v,,v,,--, v, } is linear independent,
but {v,,v,,...,v,, v, } is linear dependent. Then v, ; must be

able to written as linear combination of {v,, vy, - v, }.

Proof. Suppose that
TyVy + XgVy + o+ TV T Vi =0 (*)

Since {v,,Vy,...,V,, Vv, } is linear dependent, there exists a nontriv-

)

ial solution (ay, ay, ..., a;,,) # 0 to the vector equation (x).

We claim that @, ; # 0. Suppose on the contrary that a;, ; = 0. Then

a4V + agVy + -+ avy, = 0. Since {vy, -, v, } is linearly independent,
we know a; = ay = -+ = a;, = 0, which contradicts to the assumption
that (ay, ay, ..., a,1) # 0. Thus a;_ ; # 0. It follows from the vector
equation (¥) that a; v, 1 = —a,v; —ayvy — -+ —ay, vy, which implies
that
ay ) ag
Vi1 = —— U1 — Ug = — Uk
g1 Opq1 A1
O

Corollary 4.2.7 Two vectots u and v in a vector space V are linearly

dependent if and only if one is a scalar multiple of the other.

Geometric view of Linear independent

1.

B = {v,} is linear independent
iffv, #0.

B = {v;, v, } is linear dependent
iff they are co-line(On a same
line).

B = {v,,v,,v5} is linear depen-
dent iff they are co-plane(On a

same plane ).
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Basis

basis

A set of vectors S = {v,,v,,...,v, } in a vector space V is a basis

for VV when the conditions below are true.

1. S spans V. 2. S is linearly independent.

If a vector space V has a basis with a finite number of vectors, then

V is finite dimensional. Otherwise, V is infinite dimensional.

Standard Basis

0
0 .
1. The set qe; = | |,eq=1| |,..,e, =] is the
0 0 1
standard basis of R, i.e., R" = span{e,,e,,... e, }.

2. The set {1,x,...,z™} is the standard basis of P, ().

3. Let E;; € M,,,(R) be the matrix such that (4, j)-entry is 1 and

all the other entries are zero. The set

{Eyyy o By Eyyy oo By By B Y

In>» y H“mlo

is the standard basis of M, (R).

mn

1 3 0
Example 4.2.16 Show that 11,1 0 |,]| 6 is a basis
1 —1 1

of R3.

Example 4.2.17 Show that {1 + = + 22,3 — 22,62 + 22} is a basis
of Py(z).

Example 4.2.18 Letu = {u;, uy, ug} be any vector in R3. Show that
the equation u = ¢, v, + ¢,v, + ¢3V5 has a unique solution for the

basis § = {v,,vy,v5} = {(1,2,3),(0,1,2),(—2,0,1)}.



Theorem 4.2.8 (Uniqueness of Basis Representation)
It S = {v,,vy,...,v,} is a basis for a vector space V, then every
vector in V can be written in one and only one way as a linear

combination of vectors in S.

Theorem 4.2.9 (Bases and Linear Dependence)
If S = {v,,v,,...,v, } is a basis for a vector space V, then every set
containing motre than n vectors in V is linearly dependent. That is,

for any m > n, W = {uy, uy, ..., u,, } is linear dependent.

Proof. Suppose that
LUy + ToUg + ... +2,u, =0. 4.1)

We are going to show that the vector equation (4.1) has a nontrivial

solution. Since S is a basis of V and W C V, we have

u1 = allvl + a21'l)2 + + anlvn,

Uy = A1V + AgoUs + ... + Ao,

Uy, = A1,V + Aoy Vo + oo + Ay Uy, -
Then sub them into the vector equation (4.1), and we have
x1(aq101 + g9 + ... + a,qv,)
+25(a190] + AgoUy + ... + a,,50,)

+ ...

+xm(a1mvl + A9, Vo + .+ a’nm”n) = 07
which implies that
(@171 + 19Ty + oo + Ay, @, Uy
+(ag1 21 + a9y + o + A9, T, )y
+...

+(an1x1 + Apalo +..+ anmxm)vn =0.
Since S is a basis, S is linear independent, thus we have
11T + 19Ty + ... + ay,, T, =0

Ay Ty + AQooTo + .. + 0oy x, =0
2177 22T9 omTm “2)

Ap1T1 + Qoo + oo + Ay T, =0
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The theorem will lead to an important con-

cepts in linear algebra.
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This homogeneous linear system (4.2) has nontrivial solution, which

implies that the vector equation (4.1) has nontrivial solution. O

Theorem 4.2.10 (Number of Vectors in a Basis) If a vector space V

has one basis with n, vectors, then every basis for V has n vectots.

Definition 4.2.7 (Dimension of a Vector Space) If a vector space
V has a basis consisting of n vectors, then the number 7 is the
dimension of V, denoted by dim(V') = n. When V consists of the

zero vector alone, the dimension of V is defined as zero.

1. The dimension of R™ with the standard operations is n.
2. The dimension of P, with the standard operations is n + 1.

3. The dimension of M, , with the standard operations is mn.

Example 4.2.19 Find the dimension of each subspace of R3.

1. W={(d,c—d,c): cand d are real numbers }
2. W ={(2b,b,0) : bis a real number }.

Exercise 4.2.4 Find the dimension of the subspace W of R* spanned
by

S = {V17v27v3} = {<_1727570)7 (37()’ 17_2)7 (_5’47972)}‘

Example 4.2.20 Let W be the subspace of all symmetric matrices
in M, . What is the dimension of W?

Theorem 4.2.11 (Basis Tests in an n-Dimensional Space) Let V' be

a vectotr space of dimension n.

1. If S = {v,,vy,...,v, } is alinearly independent set of vectors
in V, then S is a basis for V.
2. If S ={vy,vy,...,v, } spans V, then S is a basis for V.

Proof. 1. To show S is a basis of V, we only need to show that
S spans V. Vv € V and let §" = {v,,v,,...,v,,v}. It follows

from Theorem ?? that S’ is linear dependent. Suppose that

TV + ToVy + ..+ v, + 2,0, =0, (4.3)



4.3 Row and Column spaces

We claim that z,, . ; # 0. Suppose on the contrary that z,,  ; =

0. The vector equation above becomes
TV1 + ToUy + ... + 2,0, = 0.
Since {vy, vy, ..., v, } is linear independent, we have

T, =Ty =..=x, =0.

Thus the vector equation 4.3 has only trivial solution. Thus S’
is linear independent, which contradicting to the established

fact that S” is linear dependent. So z,,, ; # 0. Then

x x x
v=——Lty - 2y — . — Py,
Lpt1 n+l Tyt
That is, S spans V. Therefore S is a basis of V.
2. Let S’ be obtained in the following way.
O
Project

Let B = {vy,vy,...,v, }. A subset B’ is called a maximal linear inde-

pendent set in the sense that Vu € B\B’, B” = B’ J{u} is a linear

dependent set. Write an algorithm to find a maximal linear indepen-

dent subset B’ of B.

4.3 Row and Column spaces of a matrix A

Row Vectors of A

Ay G ... g, (@, ap,. . ., a)
A= Q) 9 Do (ay, @y, - )
A1 G Dynp (aml’ Qs+ v o amn)

Column Vectors of A

ay G - .. Ay ap || 4z Ay,
A=|% 92 - G Ay (| A2z Ay
aml amz amn A amZ amn

Example:

59
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01 -1
For the matrix A = , the row vectors are (0,1,—1)

-2 3 4

0 1 —1
and (—2, 3, 4), and the column vectors are l 0 1 , { 3 },and l A 1

Definition 4.3.1 (Row Space and Column Space of a Matrix)

Let A be an m X n mattix.

1. The row space of A is the subspace of R" spanned by the row
vectors of A.
2. The column space of A is the subspace of R™ spanned by the

column vectors of A.
01 -1
-2 3 4

» The row space is the set span{(0,1,—1), (—2,3,4)}.

» The column space is the set span 0 , ! , -1 .
—2 3 4

Recall that span(S) is a subspace. The row or column space is a sub-

Example: Let A =

space of R™, thus it is important to find a basis for the subspaces.

Theorem 4.3.1 (Basis for the Row Space of a Matrix)
If a matrix A4 is row-equivalent to a matrix B in row-echelon form,

then the nonzero row vectors of B form a basis for the row space

of A.

Theorem 4.3.2 (Basis for the Column Space of a Matrix)

the pivot columns of a matrix A form a basis for the column space

of A.

Example: Find a basis for the row space and column space of the

matrix A below, respectively.

13 1 10 -2 0
01 1 01 10
A=| -3 0 6 -1 |, RREFA)=|0 0 0 1
3.4 -2 1 00 00

I 0 —4 —2 00 0 0|

Theorem 4.3.3 The row space and column space of an m x n matrix

A have the same dimension.
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Definition 4.3.2 (Rank of a Matrix)
The dimension of the row (ot column) space of a matrix A is the
rank of A and is denoted by rank(A).

Null space

Definition: Nullspace and nullity

If A is an m x n matrix, then the set of all solutions of the homoge-
neous system of linear equations Ax = 0 is a subspace of R™ called
the nullspace of A and is denoted by N(A). So,

N(A) = {x € R : Ax = 0}.

The dimension of the nullspace of A is the nullity of A.

Example: Find the nullspace of the matrix.

12 —2 1 1 20 3
A=13 6 -5 4|, RREF(4)=|0 0 1 1
1 2 0 3 0000

Theorem 4.3.4 Let A be an m x n matrix. Then

n = rank(A) + nullity(A)

Theorem 4.3.5 (Solutions of a onhomogeneous linear system)
Ifx,, is a particular solution of the nonhomogeneous system Ax = b,

then every solution of this system can be written in the form
X=X, + X,

where x, is a solution of the corresponding homogeneous system

Ax = 0.

4.4 From Abstract to concrete

Coordinate vector

Prove that

P The set of all solution vectors
of the nonhomogeneous system
Ax = b, where b # 0, is not a
subspace

P Suppose that both x, and vy,
are two particular solution of the
nonhomogeneous system Ax = b,
then x, — vy, is a solution of the
homogeneous system Ax = 0.

P Show that Y, = X, +X,,, wherex,,
is a solution of the corresponding

homogeneous system Ax = 0.
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—X=cVvy+..+c,v,

Definition 4.4.1 (coordinate vector)
Let B = {v;,v,,...,V, } be an ordered basis for a vector space V'

and let x be a vector in V such that
X = CV) + CoVg + 0+ Cp V.

The scalars ¢y, ¢y, ... , ¢, are the coordinates of x relative to the basis
B. The coordinate vector of x relative to B is the column vector in

R™ whose components are the coordinates of x, denoted by

Example 4.4.1 Find the coordinate vector of x = (1,2,—1) in R?
relative to the standard basis B and a (nonstandard) basis B’ =

{(1,0,1),(0,—1,2),(2,3,—5)}, respectively.

Example 4.4.2

Let B = {(9,-3,15,4),(3,0,0,1),(0,—5,6,8),(3,—4,2,—3)} be
a basis of R%, x = (0, —20,7,15) and y = (15,19, 23, —10). Find
x|, [y]p and [x +y] 5.

Hint: You may use the following fact.

9 3 0 3 15 0 1 0 0 0 1 -1
—5 — — — —_

RREF 0 -5 —4 -19 —20 | _ 0o 1 0 0 -2 1

5 0 6 2 23 7 0 0 1 0 3

4 1 8 -3 —10 15 0 0 0 1 2

Theorem 4.4.1 Let B be a basis of a vector space V, x,y € V and
k € R. Then

x+vy]p = [X]5 + [¥]p

1.
2. [kxlp = k([x]p)

Theorem 4.4.2 Let S = {v;, vy, ...,v,,} be a subset of V' and B be

a basis of a vector space V. Show that

S is linear independent iff {[v,] 5, ..., [v,,,] 5} is linear independent.

Example 4.4.3 Letx = —20x + 722 4 1523,y = 15— 192 + 2322 —



4.4 From Abstract to concrete

10z® and B = {9 — 3z + 152% + 42,3 + 23, =5z + 62 + 83,3 —
4z + 222 — 3x3}.

1. Show that B is a basis of Py(z).
2. Compute [x] 5 and [y] g

Example 444 lLetx = l : —20 = 15 =19 and B =

Y
15 23 —10
9 -3 30 0 -5 3 4
5 40 lo1|'le 8| |2 =3|[

1. Show that B is a basis of My, (R).

2. Compute [x] 5 and [y] s

It follows from the previous three examples, we know that vector can
disguise in different ways. However, One can understand any abstract

vector with respect to a basis in the sense of R™.

Transition Matrix

Lemma 4.4.3 Let B = {v,,v,,...,v, } and B" = {uy,u,,...,u, } be

two bases for a vector space V. If
Vi =ty +Cylig + o+ 1y,

Vo = CioUy 1 Coolly + -+ + Cpoly,

Vo = C1pM + Conlo + ot Crnln

then the transition matrix from B to B’ is defined as

Cll Cl2 cee Cln
021 022 cee 02

Q=1 T | = v Fele o [alp]
€1 Cna - Cpn

How to find the the transition matrix from B to B’?

1. How to find [v,]5?

2. How to find [v,]| g/, [Vo] g » **+, [V,,] g together?

3.Let S=[u; v, .. wjandT =1[v, v, .. v,]| BEx
press ) by S and T..

63
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Exercise: Find the the transition matrix from B’ to B?

Example 4.4.5 Find the transition matrix from B to B’ for the bases

for R? below.

B={(-3,2),(4,—2)} and B ={(-1,2),(2,—-2)}

Theorem 4.4.4 (Change of basis)
Let B = {vy,vy,...,v,} and B’ = {u;,u,, ..., u, } be two bases for
a vector space V, and @ is the transition matrix from B to B’. For

any vector x € V,
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